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Disclaimer

These notes are based on the lecture slides from NPFL129 course: Introduction to Machine
Learning with Python in winter semester 2024/25 which are under CC-BY-SA-4.0 license. The
notes are not guaranteed to be correct and are not a substitute for the lecture. They are intended
to be used as a study aid and should not be used as the only source of information for the exam.

Arti�cial Intelligence such as GPT-4, GitHub Copilot and possibly others were used in the
proccess of writing this document.

License

CC-BY-SA-4.0

Part I

Lecture 1

Q1.1 Explain how reinforcement learning di�ers from supervised
and unsupervised learning in terms of the type of input the learn-
ing algorithms use to improve model performance. [5]

Reinforcement learning di�ers from supervised and unsupervised learning based on the type of
input and feedback used to improve model performance. In supervised learning, the algorithm
learns from labeled data where each input is paired with a known output, aiming to minimize
prediction errors. Unsupervised learning uses unlabeled data to uncover hidden patterns or
structures without explicit feedback. In contrast, reinforcement learning involves an agent in-
teracting with an environment, receiving rewards or penalties as feedback for actions taken, and
learning through trial-and-error to maximize cumulative rewards over time. Unlike supervised
learning's direct guidance and unsupervised learning's pattern discovery, reinforcement learning
focuses on sequential decision-making.

Q1.2 Explain why we need separate train and test data? What
is generalization and how the concept relates to under�tting and
over�tting? [10]

Why Separate Train and Test Data:

� To evaluate the performance of a machine learning model reliably.
� Training data is used to �t the model, while test data assesses its performance on unseen
data.

� Prevents over�tting, ensuring the model generalizes well to new, unseen data.

Generalization:

� The ability of a model to perform well on new, unseen data.
� Indicates how well the model learns the underlying patterns, not just memorizing the
training data.

Relation to Under�tting and Over�tting:
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� Under�tting: Model is too simple, fails to capture underlying patterns in data, leading
to poor performance on both training and test data.

� Over�tting: Model is too complex, captures noise along with patterns in the training
data, leading to poor generalization on test data.

Q1.3 De�ne prediction function of a linear regression model and
write down L2-regularized mean squared error loss. [10]

Prediction Function: Given an input vector x ∈ RD, the prediction function f for linear
regression is de�ned as:

f(x;w, b) = wTx+ b

where w is the weight vector, b is the bias term, and T denotes the transpose of w.
L2-Regularized Mean Squared Error Loss: The L2-regularized mean squared error loss

(also known as Ridge Regression) for a dataset with N samples is de�ned as:

L(w, b) =
1

2N

N∑
i=1

(f(xi;w)− ti)
2 + λ∥w∥2

where ti is the true target value for the i-th sample, λ is the regularization parameter, and ∥w∥2
denotes the L2 norm of the weight vector, which is the sum of the squares of its components.

Q1.4 Starting from unregularized sum of squares error of a linear
regression model, show how the explicit solution can be obtained,
assuming XTX is regular. [10]

In order to �nd a minimum of 1
2

∑N
i=1(x

T
i w− ti)

2, we can inspect values where the derivative of
the error function is zero, with respect to all weights wj .

∂

∂wj

1

2

N∑
i=1

(xTi w − ti)
2 =

1

2

N∑
i=1

2(xTi w − ti)xij =
N∑
i=1

xij(x
T
i w − ti)

Therefore, we want for all j that
∑N

i=1 xij(x
T
i w − ti) = 0. We can rewrite the explicit sum

into XT
∗,j(Xw − t) = 0, then write the equations for all j together using matrix notation as

XT (Xw − t) = 0, and �nally, rewrite to

XTXw = XT t.

The matrix XTX is of size D×D. If it is regular, we can compute its inverse and therefore

w = (XTX)−1XT t.
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Part II

Lecture 2

Q2.1 Describe standard gradient descent and compare it to stochas-
tic (i.e., online) gradient descent and minibatch stochastic gradient
descent. Explain what it is used for in machine learning. [10]

Standard gradient descent, also known as batch gradient descent, computes the gradient of
the cost function with respect to the parameters (w) for the entire training dataset:

w ← w − α∇wE(w)

where α is the learning rate.
Stochastic Gradient Descent (SGD), or online gradient descent, on the other hand,

updates the parameters for each training example:

∇wE(w) ≈ ∇wL(y(xi;w), ti)

This method is noisier but can converge faster for large datasets.
Minibatch SGD is a compromise between the two, updating the parameters for a small

subset of the training data:

∇wE(w) ≈ 1

B

B∑
i=1

∇wL(y(xi;w), ti)

This approach aims to balance the computational e�ciency of standard gradient descent with
the faster convergence of SGD.

Q2.2 Explain possible intuitions behind L2 regularization. [5]

L2 regularization helps prevent over�tting by adding a penalty for large weights in a model.
This penalty is the sum of the squares of the model's parameters, making it costly to have very
large values. By keeping the weights smaller, the model becomes simpler and less likely to �t
noise in the data. It also balances bias and variance, reducing the model's sensitivity to speci�c
features and improving its ability to generalize to new data.

Generally, we want to reduce over�tting of the model. In short, the regularization controls
complexity to create smoother, more reliable models.

Q2.3 Explain the di�erence between hyperparameters and param-
eters. [5]

Parameters are internal values that the model learns from the training data. Examples include
weights in linear regression or neural networks and the split points in decision trees. Parameters
change automatically during training to optimize the model's performance by minimizing the
loss function.

Hyperparameters are external con�gurations set before training begins and control how the
learning process operates. Examples include the learning rate, regularization strength, and
the number of hidden layers in a neural network. Unlike parameters, hyperparameters are not
learned from the data but must be tuned manually or using automated search techniques to �nd
the best model performance.

In summary, parameters are learned by the model, while hyperparameters are prede�ned
settings that in�uence how the model learns.
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Q2.4 Write an L2-regularized minibatch SGD algorithm for train-
ing a linear regression model, including the explicit formulas (i.e,
formulas you would need to code it with numpy) of the loss func-
tion and its gradient. [10]

The loss function for L2-regularized linear regression is given by:

E(w) =
1

2
E(x,t)∼pdata [(x

Tw − t)2] +
λ

2
∥w∥2

where w are the weights, x is the input, t is the target, and λ is the regularization parameter.
The gradient of the loss function with respect to the weights is:

∇wE(w) ≈ 1

|B|
∑
i∈B

((xTi w − ti)xi) + λw

where B is a minibatch of examples.

Pseudocode of the minibatch SGD algorithm

Require: Dataset {X ∈ RN×D, t ∈ RN}, learning rate α ∈ R+, L2 strength λ ∈ R
Ensure: Weights w ∈ RD minimizing the regularized MSE of a linear regression model.
1: Initialize w randomly
2: repeat
3: Sample a minibatch B of examples with indices B
4: Compute gradient g according to ∇wE(w) using B
5: Update w: w ← w − α · g
6: until convergence or maximum number of iterations is reached

Q2.5 Does the SGD algorithm for linear regression always �nd
the best solution on the training data? If yes, explain under what
conditions it happens, if not explain why it is not guaranteed to
converge. What properties of the error function does this depend
on? [10]

Stochastic Gradient Descent (SGD) for linear regression does not always guarantee �nding the
best solution on the training data. It converges to the global optimum if the following conditions
are met:

� The loss function is convex and continuous.
� The learning rate αi meets the Robbins-Monro conditions, which are:

� αi > 0
�
∑∞

i=1 αi =∞
�
∑∞

i=1 α
2
i <∞

� The third condition ensures that αi → 0 as i→∞.

When these conditions are satis�ed, SGD converges to the unique optimum of convex prob-
lems. However, for non-convex loss functions, SGD is not guaranteed to �nd the global minimum;
it may converge to a local minimum instead. The noise in the gradient estimation due to the
stochastic nature of the algorithm can also a�ect convergence. Thus, while SGD can perform
well in practice, especially for large datasets, it doesn't always �nd the best solution due to these
factors.
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Q2.6 After training a model with SGD, you ended up with a low
training error and a high test error. Using the learning curves,
explain what might have happened and what steps you might take
to prevent this from happening. [10]

The learning curves might indicate that while the training loss decreases over time, the test
loss decreases initially but then starts to increase. This scenario suggests that the model is
over�tting to the training data. Over�tting occurs when a model learns the training data too
well, including noise and details that do not generalize to unseen data. Consequently, the model
performs well on the training data but poorly on the test data.

To prevent over�tting, you can take the following steps:

1. Use regularization techniques such as L1 (LASSO) or L2 (Ridge) to penalize large weights
in the model.

2. Implement early stopping based on validation performance to halt training before over�t-
ting occurs.

3. Increase the size of the training set if possible, to provide the model with more generalizable
examples.

4. Simplify the model by reducing its complexity to prevent it from capturing noise in the
data. (Make less features, use less layers, etc.)

These methods can help in guiding the model to generalize better to unseen data and thus
improve its test performance.

Another reason might be that the model failed to converge. In this case, you can try to
increase the number of iterations or decrease the learning rate to improve convergence.

Q2.7 You were given a �xed training set and a �xed test set, and
you are supposed to report model performance on that test set.
You need to decide what hyperparameters to use. How will you
proceed and why? [10]

To determine the best hyperparameters for a model given a �xed training and test set, the
following procedure should be employed:

1. Split the training set: Divide the training set into a smaller training set and a validation
set.

2. Hyperparameter tuning: Use the smaller training set to train di�erent models with var-
ious hyperparameter con�gurations. (Grid Search, Random Search, Hyperband, SMAC,
etc.)

3. Validation: Evaluate the performance of each model on the validation set.

4. Selection: Choose the hyperparameters that yield the best performance on the validation
set.

5. Final Model: Train a new model on the full training set using the selected hyperparam-
eters.

6. Testing: Report the model's performance on the �xed test set.
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This procedure is crucial because it helps to estimate the model's performance on unseen
data and prevents over�tting to the training set. The validation set acts as a proxy for the test
set, allowing for an unbiased evaluation of hyperparameter choices.

Q2.8 What method can be used for normalizing feature values?
Explain why it is useful. [5]

Feature normalization can be achieved through methods such as Min-Max normalization and
Z-score standardization. These methods are useful for several reasons:

� Min-Max Normalization: Scales the features to a �xed range, typically [0, 1]. It is
given by the formula:

x′i,j =
xi,j −mink xk,j

maxk xk,j −mink xk,j

This method is bene�cial when we need to bound our features within a speci�c scale
without distorting di�erences in the ranges of values.

� Z-score Standardization: Transforms the features to have a mean of zero and a standard
deviation of one. The formula is:

x′i,j =
xi,j − x̄j

σj

This is particularly useful in optimization algorithms that require features on a comparable
scale for e�cient learning.

Additionally, techniques similar to PCA, such as Principal Component Analysis itself, can be
used for feature scaling and reduction. PCA transforms the data into a new coordinate system,
reducing dimensionality and potentially improving model performance by removing noise and
redundancy in the data.

Part III

Lecture 3

Q3.1 De�ne binary classi�cation, write down the perceptron algo-
rithm, and show how a prediction is made for a given data instance
x. [10]

Binary classi�cation is the task of classifying the elements of a given set into two groups based
on a classi�cation rule. In binary classi�cation, the output variable can take only two values,
typically denoted as 0 and 1, or -1 and 1 in some contexts.

The perceptron algorithm is a binary classi�er that linearly separates these two classes. The
algorithm iteratively adjusts the weights based on the training data. Given a set of features x
and a target t, the perceptron rule updates the weights w as follows:

if ti(x
T
i w) ≤ 0 then

w ← w + tixi
end if

To make a prediction ŷ for a new example with feature vector x, the perceptron uses the
sign of the dot product between the features and weights:

ŷ = sign(xTw)
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where sign is an activation function that maps positive values to +1 and non-positive values
to -1.

Prediction Example

Given a new input x and trained weights w, the perceptron prediction is computed as:

ŷ = sign(xTw + b)

where b is the bias term of the perceptron. If ŷ is positive, the input is classi�ed into one class,
and if it is negative, it is classi�ed into the other class.

Q3.2 For discrete random variables, de�ne entropy, cross-entropy,
and Kullback-Leibler divergence, and prove the Gibbs inequality
(i.e., that KL divergence is non-negative). [20]

Entropy H(P ) for a discrete random variable with probability distribution P is de�ned as:

H(P ) = −
∑
x

P (x) logP (x)

It measures the expected level of 'surprise' or uncertainty inherent in the variable's possible
outcomes.

Cross-entropy H(P,Q) between two discrete probability distributions P and Q is de�ned as:

H(P,Q) = −
∑
x

P (x) logQ(x)

It measures the expected number of bits (if the log is in base 2) required to identify an event
from a set of possibilities if a wrong distribution Q is used instead of the true distribution P .

Kullback-Leibler divergence DKL(P ||Q) from Q to P is de�ned as:

DKL(P ||Q) = H(P,Q)−H(P ) =
∑
x

P (x) log
P (x)

Q(x)

It measures how one probability distribution diverges from a second, expected probability dis-
tribution.

Proof of Gibbs Inequality: We want to prove that DKL(P ||Q) ≥ 0, with equality if and
only if P = Q.

Using the log sum inequality log a
b ≤

a
b − 1 with equality only if a = b, we have:

H(P )−H(P,Q) =
∑
x

P (x) log
Q(x)

P (x)

≤
∑
x

P (x)

(
Q(x)

P (x)
− 1

)
=
∑
x

Q(x)−
∑
x

P (x)

= 0

since
∑

x P (x) = 1 and
∑

xQ(x) = 1. The inequality is strict unless P (x) = Q(x) for all x,
which proves Gibbs Inequality.
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Q3.3 Explain the notion of likelihood in machine learning. What
likelihood are we estimating, and why do we do it? [10]

Likelihood in the context of maximum likelihood estimation (MLE) is a function that measures
the probability of observing the given data under di�erent parameter values of a statistical model.
For a set of independent and identically distributed (i.i.d) data points X = {x1, x2, . . . , xN},
the likelihood of a parameter w is de�ned as:

L(w) =

N∏
i=1

Pmodel(xi;w)

where Pmodel(xi;w) is the probability of observing the speci�c data point xi under the model
parameterized by w.

In MLE, we seek the parameter w that maximizes this likelihood function, which is equivalent
to maximizing the probability of observing the given data. While the likelihood itself is not a
probability distribution, it serves as a scoring function that indicates how well the model with
a particular set of parameters explains the observed data. Maximizing the likelihood function
leads to �nding the parameter values that make the observed data most probable under the
assumed model.

Q3.4 Describe maximum likelihood estimation as minimizing NLL,
cross-entropy, and KL divergence and explain whether they di�er
or are the same and why. [20]

Let X = {x1, x2, . . . , xN} be training data drawn independently from the data-generating distri-
bution pdata. We denote the empirical data distribution as p̂data, where p̂data(x) =

1
N

∑N
i=1 I[xi =

x]. Let pmodel(x;w) be a family of distributions.
The maximum likelihood estimation of w is:

wMLE = argmax
w

pmodel(X;w) = argmax
w

N∏
i=1

pmodel(xi;w)

= argmin
w
−

N∑
i=1

log pmodel(xi;w)

= argmin
w

Ex∼p̂data [− log pmodel(x;w)]

= argmin
w

H(p̂data(x), pmodel(x;w))

= argmin
w

DKL(p̂data(x)||pmodel(x;w)) +H(p̂data(x))

For MLE generalized to the conditional case, where the goal is to predict t given x:

wMLE = argmax
w

pmodel(t|x;w) = argmax
w

N∏
i=1

pmodel(ti|xi;w)

= argmin
w
−

N∑
i=1

log pmodel(ti|xi;w)
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= argmin
w

E(x,t)∼p̂data [− log pmodel(t|x;w)]

= argmin
w

H(p̂data(t|x), pmodel(t|x;w))

= argmin
w

DKL(p̂data(t|x)||pmodel(t|x;w)) +H(p̂data(t|x))

Where H(p̂data) is the entropy of the empirical data distribution and DKL is the Kullback-
Leibler divergence. The terms are de�ned such that the conditional entropy is H(p̂data) =
E(x,t)∼p̂data [− log(p̂data(t|x))] and the conditional cross-entropy isH(p̂data, pmodel) = E(x,t)∼p̂data [− log(pmodel(t|x;w))].
The negative log-likelihood (NLL) is equivalent to cross-entropy or Kullback-Leibler divergence
in the context of MLE.

Q3.5 Provide an intuitive justi�cation for why cross-entropy is a
good optimization objective in machine learning. What distribu-
tions do we compare in cross-entropy? Why is it good when the
cross-entropy is low? [5]

Cross-entropy is a good optimization objective in machine learning because it measures how well
the predicted probability distribution from a model matches the true distribution of the target
labels. Intuitively, it quanti�es the di�erence between what the model believes (its predicted
probabilities) and the actual outcomes.

In classi�cation tasks, cross-entropy compares:

� True distribution: Represented as a one-hot encoded vector for each class, where the
correct class has a probability of 1, and all others are 0.

� Predicted distribution: The model's output probabilities for each class (softmax or sigmoid
outputs).

When the cross-entropy is low, it means the predicted probabilities are close to the true
labels � the model is con�dent and correct. For instance, if a model correctly predicts a
probability near 1 for the correct class and near 0 for others, the cross-entropy loss is minimal.
Conversely, high cross-entropy means the predictions are far from the true labels, indicating
poor performance.

In essence, minimizing cross-entropy encourages the model to assign high probabilities to
correct labels, leading to better classi�cation accuracy and more con�dent predictions aligned
with the true data distribution.

Q3.6 Considering binary logistic regression model, write down its
parameters (including their size) and explain how prediction is
performed (including the formula for the sigmoid function). [10]

In a binary logistic regression model, the prediction ŷ is based on the probability that a given
input x belongs to a particular class C1, which is modeled using the logistic function σ. The
parameters of the model include:

� Weight vector w ∈ RD, where D is the number of features.
� Bias b ∈ R.
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The logistic regression model makes predictions using the sigmoid function σ applied to the
linear combination of the input features and the model weights:

σ(z) =
1

1 + e−z
=

ez

ez + 1

Given an input x, the linear part of the logistic regression model computes z as:

z = xTw + b

The �nal prediction ŷ is given by:

ŷ(x;w) = σ(z) = σ(xTw + b)

The output of the linear part xTw + b can be interpreted as logits, which are the log odds
of the probability that x belongs to class C1 before the sigmoid transformation. Logits can take
any real value, and transforming them through the sigmoid function maps them to the (0, 1)
interval, representing probabilities.

Q3.7 Write down an L2-regularized minibatch SGD algorithm for
training a binary logistic regression model, including the explicit
formulas (i.e., formulas you would need to code it in numpy) of
the loss function and its gradient. [20]

To train the logistic regression, we use MLE (maximum likelihood estimation). The loss for a
minibatch X = {(x⃗1, t1), (x⃗2, t2), . . . , (x⃗N , tN )} is given by

E(w) =
1

N

∑
i

− log(p(Cti |xi;w)) +
λ

2
∥w∥2

The logistic regression model uses the sigmoid function as the activation function, which is
de�ned as

σ(x) =
1

1 + e−x
.

The parameters are updated using the SGD algorithm as follows:

1. Initialize the weight vector w⃗ ← 0⃗ or randomly.

2. Repeat until convergence:

� Compute the gradient for a minibatch B:

g⃗ ← 1

|B|
∑
i∈B
∇w⃗ (− log(p(Cti |x⃗i; w⃗))) + λw⃗

� Update the weights:
w⃗ ← w⃗ − αg⃗

Logistic Regression Gradient

Consider the log-likelihood of logistic regression log p(t|x⃗; w⃗). For brevity, we denote ȳ(x⃗; w⃗) =
x⃗T w⃗ simply as ȳ in the following computation.

Given that for t ∼ Ber(ϕ) we have p(t) = ϕt(1− ϕ)1−t, we can rewrite the log-likelihood as:

log p(t|x⃗; w⃗) = log σ(ȳ)t(1− σ(ȳ))1−t
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This simpli�es to:

t · log(σ(ȳ)) + (1− t) · log(1− σ(ȳ))

The gradient of the logistic regression's likelihood with respect to the weights w⃗ is derived
as follows:

∇w⃗ − log p(t|x⃗; w⃗) = ∇w⃗ (−t log(σ(ŷ))− (1− t) log(1− σ(ŷ)))

= ∇w⃗

(
−t log(σ(x⃗T w⃗))− (1− t) log(1− σ(x⃗T w⃗))

)
= −t · 1

σ(ŷ)
· ∇w⃗σ(ŷ) + (1− t) · 1

1− σ(ŷ)
· ∇w⃗(−σ(ŷ))

= (−t+ tσ(ŷ) + σ(ŷ)− tσ(ŷ)) x⃗

=
(
σ(x⃗T w⃗)− t

)
x⃗

where ŷ = x⃗T w⃗ and the gradient of the sigmoid function σ(x) is σ(x)(1− σ(x)). The resulting
gradient is used to update the weights in the SGD algorithm.

Therefor the gradient of the loss function is:

∇w⃗E(w⃗) =
1

N

∑
i

(
σ(x⃗Ti w⃗)− ti

)
x⃗i + λw⃗

Part IV

Lecture 4

Q4.1 De�ne mean squared error and show how it can be derived
using MLE. What assumptions do we make during such deriva-
tion? [10]

Mean Squared Error (MSE) is commonly used as a loss function for regression problems and can
be derived from Maximum Likelihood Estimation (MLE) when we assume that the target vari-
ables, t, conditioned on the inputs, x⃗, are normally distributed with a mean equal to the output
of the model, y(x⃗; w⃗), and variance σ2. Under this assumption, the probability distribution for
t is given by p(t|x⃗; w⃗) = N (t; y(x⃗; w⃗), σ2).

Applying MLE, we look for the parameters w⃗ that maximize the likelihood of the observed
data, which is equivalent to minimizing the negative log-likelihood. This leads to the MSE as
follows:

w⃗MLE = argmax
w⃗

p(⃗t|X⃗; w⃗) = argmin
w⃗

N∑
i=1

− log p(ti|x⃗i; w⃗)

= argmin
w⃗
−

N∑
i=1

log

(
1√
2πσ2

exp

(
−(ti − y(x⃗i; w⃗))

2

2σ2

))

= argmin
w⃗
−N log

(
(2πσ2)−

1
2

)
−

N∑
i=1

(ti − y(x⃗i; w⃗))
2

2σ2

= argmin
w⃗

1

2σ2

N∑
i=1

(y(x⃗i; w⃗)− ti)
2.

Ignoring the constant 1
2σ2 , we obtain the familiar form of the MSE:
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E(w⃗) =
1

N

N∑
i=1

(y(x⃗i; w⃗)− ti)
2.

This derivation shows that when we assume a normal distribution for the model errors, the
MLE approach naturally leads to the MSE as the loss function to be minimized.

Q4.2 Considering K-class logistic regression model, write down its
parameters (including their size) and explain how we decide what
classes the input data belong to (including the formula for the
softmax function). [10]

To extend the binary logistic regression to a K-class case, we de�ne the model parameters as a
weight matrix W ∈ RD×K , where D is the number of features and K is the number of classes.
Each column W∗,i corresponds to the weights associated with class i.

Predictions are made using the softmax function applied to the linear outputs, known as
logits. For an input vector x⃗, the logits are given by y⃗(x⃗;W ) = W T x⃗, and the softmax function
is de�ned as:

softmax(z⃗)i =
ezi∑K
j=1 e

zj

for each class i, where z⃗ is the vector of logits.
Therefore, the probability that x⃗ belongs to class i is:

p(Ci|x⃗;W ) = softmax(y⃗(x⃗;W ))i =
ex⃗

TW∗,i∑K
j=1 e

x⃗TW∗,j

The linear part of the model x⃗TW can be interpreted as logits because they represent the
log odds before passing through the softmax function. The softmax function normalizes these
log odds to probabilities that sum to one across all classes.

Training a K-class logistic regression model typically involves using the cross-entropy loss
function, which for a given data point (xi, ti) is:

E(W ) = −
N∑
i=1

log p(Cti |x⃗i;W )

This loss function is minimized using optimization algorithms such as minibatch stochastic
gradient descent (SGD).

Q4.3 Explain the relationship between the sigmoid function and
softmax. [5]

The softmax function is a generalization of the sigmoid function to the case where there are
multiple classes. For binary classi�cation (K = 2), the softmax function simpli�es to the sigmoid
function. Speci�cally, the sigmoid function is de�ned as:

σ(x) =
1

1 + e−x

which is the probability of a single class (e.g., class 1 in binary classi�cation).
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The softmax function, which is used for multinomial logistic regression with K classes, is
de�ned as:

softmax(z)i =
ezi∑K
j=1 e

zj

for each class i. When K = 2, this reduces to:

softmax([x, 0]) =
ex

ex + e0
=

1

1 + e−x

which is identical to the sigmoid function. Therefore, the softmax function can be seen as an ex-
tension of the sigmoid function from binary to multiclass classi�cation, where the output for each
class is the normalized exponential function of the logits, ensuring that the class probabilities
sum to one.

The sigmoid function thus can be represented as a softmax function applied to a vector with
two elements, where one element is the logit x and the other is zero. This connection shows the
versatility of softmax as a multi-class sigmoid function.

Q4.4 Show that the softmax function is invariant towards constant
shift. [5]

The main idea is that the term ec gets canceled out.
softmax(zi + c) = ezi+c∑n

j=1 e
zj+c = eziec∑n

j=1 e
zj ec

= ezi∑n
j=1 e

zj = softmax(zi)

Q4.5 Write down an L2-regularized minibatch SGD algorithm for
training a K-class logistic regression model, including the explicit
formulas of the loss function and its gradient. [20]

To train a K-class logistic regression model, we use the minibatch stochastic gradient descent
(SGD) with L2 regularization. The loss function is the regularized negative log-likelihood, and
the gradient takes into account the regularization term.

Algorithm

1. Input: Input dataset X ∈ RN×D, target labels t ∈ {0, 1, . . . ,K − 1}N , learning rate
α ∈ R+, and regularization parameter λ ∈ R+.

2. Model Parameters: Initialize weight matrix W ∈ RD×K and bias vector b ∈ RK either
to zero or with random values.

3. Optimization: Repeat until convergence:

� Compute the gradient of the loss with respect to W for a minibatch B:

g← 1

|B|
∑
i∈B
∇W (− log(p(Cti |xi;W))) + λW

� Update the weights:
W←W − αg
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Loss Function

The regularized loss function for a minibatch B is:

E(W) = − 1

|B|
∑
i∈B

log(p(Cti |xi;W)) +
λ

2
∥W∥2F

where ∥W∥2F is the Frobenius norm of W, representing the L2 regularization term.

Gradient

The gradient of the loss function with L2 regularization is:

∇WE(W) = − 1

|B|
∑
i∈B

xi(softmax(xTi W)− 1t)
T + λW

Note that 1t is a one-hot vector with a 1 in the position corresponding to the target class t.

Q4.6 Prove that decision regions of a multiclass logistic regression
are convex. [10]

To prove the convexity of decision regions in multiclass logistic regression, consider two points
xA and xB in the same decision region Rk. The decision criterion for logistic regression is based
on the linear functions xTW , where W is the weight matrix. A point x is in region Rk if and
only if

ŷ(x)k = xTWk

is the largest among all class scores. For two points xA, xB ∈ Rk, and any λ ∈ [0, 1], their
convex combination x = λxA + (1− λ)xB also satis�es

ŷ(x)k = λŷ(xA)k + (1− λ)ŷ(xB)k

Given that both ŷ(xA)k and ŷ(xB)k are the largest scores for their respective points, ŷ(x)k
will also be the largest score for the convex combination, placing x in Rk. This holds for any
convex combination of points in Rk, thus Rk is convex.

Q4.7 Considering a single-layer MLP with D input neurons, H hid-
den neurons, K output neurons, hidden activation f , and output
activation a, list its parameters (including their size) and write
down how the output is computed. [10]

A single-layer Multilayer Perceptron (MLP) with D input neurons, H hidden neurons, and K
output neurons, uses the following parameters:

� Hidden layer weights W (h) ∈ RD×H

� Hidden layer biases b(h) ∈ RH

� Output layer weights W (y) ∈ RH×K

� Output layer biases b(y) ∈ RK

The activation functions for the hidden and output layers are denoted by f and a respectively.
The output is computed as follows:

For a single input x ∈ RD:
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1. Hidden layer activations: h = f(xTW (h) + b(h))

2. Output predictions: y = a(hTW (y) + b(y))

For a batch of inputs X ∈ RN×D:

1. Batch hidden layer activations: H = f(XW (h) + 1b(h))

2. Batch output predictions: Y = a(HW (y) + 1b(y))

where 1 is a column vector of ones for bias broadcasting over the batch.

Q4.8 List the de�nitions of frequently used MLP output layer acti-
vations (the ones producing parameters of a Bernoulli distribution
and a categorical distribution). Then write down three commonly
used hidden layer activations (sigmoid, tanh, ReLU). Explain why
identity is not a suitable activation for hidden layers. [10]

Output Layer Activations

� Identity (Regression): identity(x) = x
� Sigmoid (Binary Classi�cation): σ(x) = 1

1+e−x

� Softmax (K-class Classi�cation): softmax(xi) =
exi∑
j e

xj

Hidden Layer Activations

� Sigmoid: σ(x) = 1
1+e−x

� Tanh: tanh(x) = ex−e−x

ex+e−x = 2σ(2x)− 1
� ReLU: ReLU(x) = max(0, x)

Part V

Lecture 5

Q5.1 Considering a single-layer MLP with D input neurons, a
ReLU hidden layer with H units and a softmax output layer with
K units, write down the explicit formulas of the gradient of all
the MLP parameters (two weight matrices and two bias vectors),
assuming input x, target t, and negative log likelihood loss. [20]

Assuming an MLP with D input neurons, a ReLU hidden layer with H units, and a softmax
output layer with K units, we compute the gradients of the loss L with respect to the weight
matricesW (h),W (y) and bias vectors b(h), b(y) given an input x, a target t, and using the negative
log likelihood loss.

Let x ∈ RD be the input vector, h ∈ RH be the output of the hidden layer, and y ∈ RK

be the output of the network. The negative log likelihood loss for a correct class c is given by
L = − log(yc) = − log(p(C|x)).
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Forward Pass:

h(in) = xTW (h) + b(h)

h = ReLU(h(in))

y(in) = hTW (y) + b(y)

y = softmax(y(in))

Backward Pass (Gradients):

∂L

∂yk
= − tk

yk
∂L

∂y(in)
= y − t (since

∑
k

tk = 1)

∂L

∂W(y)
= h

(
∂L

∂y(in)

)⊤

∂L

∂b(y)
=

∂L

∂y(in)

∂L

∂h
= W(y) ∂L

∂y(in)

⊤

∂L

∂h(in)
=

{
∂L
∂h if h(in) > 0

0 otherwise
(ReLU gradient)

∂L

∂W(h)
= x

(
∂L

∂h(in)

)⊤

∂L

∂b(h)
=

∂L

∂h(in)

Gradient of Loss with respect to Output Probabilities y

∂L

∂y
= − t

y

Gradient of Output Probabilities with respect to Logits y(in)

The softmax function for a class k is given by yk = e
y
(in)
k∑

j e
y
(in)
j

. Its derivative with respect to the

logits y
(in)
i is:

∂yk

∂y
(in)
i

=

{
yk(1− yi) if i = k,

−ykyi if i ̸= k.
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Chain Rule Application for Loss Gradient with respect to Logits

∂L

∂y
(in)
i

=
∑
k

∂L

∂yk

∂yk

∂y
(in)
i

=
∂L

∂yi

∂yi

∂y
(in)
i

+
∑
k ̸=i

∂L

∂yk

∂yk

∂y
(in)
i

= − ti
yi
yi(1− yi)−

∑
k ̸=i

tk
yk

(−ykyi)

= −ti + tiyi +
∑
k ̸=i

tkyi

= −ti + yi

ti +
∑
k ̸=i

tk


= −ti + yi

∑
k

tk

= yi − ti (since
∑
k

tk = 1 for one-hot encoded targets)

Gradient of Loss with respect to Output Layer Weights W(y)

∂L

∂W(y)
=

∂L

∂y(in)

∂y(in)

∂W(y)

= (y − t)⊤ h

Gradient of Loss with respect to Output Layer Biases b(y)

∂L

∂b(y)
= y − t

Gradient of Loss with respect to Hidden Layer Outputs h

∂L

∂h
= W(y) (y − t)

Gradient of Loss with respect to Hidden Layer Pre-Activation h(in)

∂L

∂h(in)
=

∂L

∂h
· I(h(in) > 0)

where I is the indicator function, yielding 1 for elements where the condition is true and 0
otherwise, which corresponds to the derivative of the ReLU activation function.

Gradient of Loss with respect to Hidden Layer Weights W(h)

∂L

∂W(h)
= x⊤ ∂L

∂h(in)

Gradient of Loss with respect to Hidden Layer Biases b(h)

∂L

∂b(h)
=

∂L

∂h(in)
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Update Rules:

W (h) = W (h) − α
∂L

∂W (h)

b(h) = b(h) − α
∂L

∂b(h)

W (y) = W (y) − α
∂L

∂W (y)

b(y) = b(y) − α
∂L

∂b(y)

In these equations, α represents the learning rate, and the derivatives with respect to h(in)

take into account the ReLU activation, which is zero for negative inputs and equal to the
derivative of the loss with respect to h otherwise. The derivative with respect to y(in) is computed
as the di�erence between the output probabilities y and the one-hot encoded target vector t.

Q5.2 Formulate the computation of MLP as a computation graph.
Explain how such a graph can be used to compute the gradients
of the parameters in the back-propagation algorithm. [10]

A Multi-Layer Perceptron (MLP) is a feedforward neural network that consists of an input layer,
one or more hidden layers, and an output layer. The MLP processes an input through each layer
by applying a series of transformations, including weighted sums and activation functions.

We can represent the computation performed by the MLP as a computation graph, where
each node represents a variable or an operation, and edges represent dependencies between them.

Let's assume an MLP with one hidden layer for simplicity, though this extends to more
layers. The forward pass involves the following steps:

1. Input to the �rst layer

2. Activation function

3. Input to the output layer

4. Output layer activation (optional)

The computation graph for this MLP can be visualized as a directed acyclic graph (DAG),
where:

Nodes: Represent operations (like matrix multiplication, addition, activation functions) and
variables (like weights, biases, activations). Edges: Represent dependencies between operations,
such as the �ow of data between layers or the relationship between weights and activations.
Here's a simpli�ed view of the graph:

Input x �-> (W1 * x + b1) �-> Activation f �-> (W2 * a1 + b2) �-> Output y
Not really sure how to explain the backpropagation part, basically you compute the gradients

of the loss with respect to the parameters by applying the chain rule in reverse order through the
graph. The gradients are computed layer by layer, starting from the output layer and moving
backward to the input layer. The chain rule allows us to compute the gradients of the loss with
respect to each parameter by multiplying the gradients of the loss with respect to the output of
each node in the graph.
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Q5.3 Formulate Universal Approximation Theorem ('89) and ex-
plain in words what it says about multi-layer perceptron. [10]

Let ϕ(x) : R→ R be a nonconstant, bounded and nondecreasing continuous function. (Later a
proof was given also for ϕ = ReLU and even for any nonpolynomial function.)

For any ϵ > 0 and any continuous function f : [0, 1]D → R, there exists H ∈ N, v ∈ RH ,
b ∈ RH and W ∈ RD×H , such that if we denote

F (x) = vTϕ(WTx+ b) =

H∑
i=1

viϕ(x
TW∗,i + bi),

where ϕ is applied elementwise, then for all x ∈ [0, 1]D:

|F (x)− f(x)| < ϵ.

Q5.4 How do we search for a minimum of a function f(x) : RD → R
subject to equality constraints g1(x) = 0, . . . , gm(x) = 0? [10]

We search for a minimum of a function f(x) : RD → R subject to equality constraints g1(x) =
0, . . . , gm(x) = 0 using the method of Lagrange multipliers. This involves �nding a point x ∈ RD

and a set of multipliers λ1, . . . , λm ∈ R such that the gradient of the Lagrangian function L(x, λ)
with respect to both x and λ is zero.

The Lagrangian is de�ned as:

L(x, λ) = f(x)−
m∑
i=1

λigi(x),

where ∇xL(x, λ) = 0 and ∇λL(x, λ) = 0. This gives us a system of equations which, when
solved, gives the points x that minimize f(x) subject to the constraints.

Q5.5 Prove which categorical distribution with N classes has max-
imum entropy. [10]

We want to �nd a categorical distribution p = (p1, . . . , pN ) that maximizes entropy, subject to
the constraints:

� pi ≥ 0 for all i,
�

∑N
i=1 pi = 1.

The entropy H(p) for a categorical distribution is given by:

H(p) = −
N∑
i=1

pi log(pi)

We form the Lagrangian L to include the equality constraint:

L(p, λ) = −
N∑
i=1

pi log(pi) + λ

(
N∑
i=1

pi − 1

)
Taking the derivative of L with respect to pi and setting it to zero:
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0 =
∂L
∂pi

= − log(pi)− 1 + λ

Solving for pi, we get:

pi = eλ−1

Since all pi must satisfy the equality constraint
∑N

i=1 pi = 1, substituting pi gives:

N∑
i=1

eλ−1 = 1

Neλ−1 = 1

eλ−1 =
1

N

pi =
1

N

Therefore, each pi is
1
N , indicating that the distribution with maximum entropy is the uniform

distribution.

Q5.6 Consider derivation of softmax using maximum entropy prin-
ciple, assuming we have a dataset of N examples (xi, ti), xi ∈ RD,
ti ∈ {1, 2, . . . , K}. Formulate the three conditions we impose on
the searched π : RD → RK, and write down the Lagrangian to be
minimized. [20]

Given a dataset of N examples (xi, ti) where xi ∈ RD and ti ∈ {1, 2, . . . ,K}, we want to derive a
softmax function using the maximum entropy principle. The softmax function π(x) must satisfy
the following conditions:

1. For all x ∈ RD and each class k, the predicted probability π(x)k ≥ 0.

2. For each input x, the probabilities must sum up to 1:
∑K

k=1 π(x)k = 1.

3. The expected value of the predicted distribution should match the empirical distribution:
1
N

∑N
i=1 π(xi)k = 1

N

∑N
i=1[ti = k] for each class k.

The Lagrangian L, incorporating these constraints with Lagrange multipliers λ and µk.
We want to minimize −

∑N
i=1H(π(xi)) given

� for 1 ≤ i ≤ N , 1 ≤ k ≤ K: π(xi)k ≥ 0,
� for 1 ≤ i ≤ N :

∑K
k=1 π(xi)k = 1,

� for 1 ≤ j ≤ D, 1 ≤ k ≤ K:
∑N

i=1 π(xi)kxi,j =
∑N

i=1[ti = k]xi,j .

We therefore form a Lagrangian (ignoring the �rst inequality constraint):

L =

N∑
i=1

K∑
k=1

π(xi)k log(π(xi)k)−
D∑
j=1

K∑
k=1

λj,k

(
N∑
i=1

π(xi)kxi,j − [ti = k]xi,j

)
−

N∑
i=1

βi

(
K∑
k=1

π(xi)k − 1

)
.
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Q5.7 De�ne precision (including true positives and others), recall,
F1 score, and Fβ score (we stated several formulations for F1 and
Fβ scores; any one of them will do). [10]

The confusion matrix is a table used to describe the performance of a classi�cation model:

Predicted Positive Predicted Negative

Actual Positive True Positives (TP) False Negatives (FN)

Actual Negative False Positives (FP) True Negatives (TN)

Table 1: Confusion Matrix

Precision quanti�es the number of correct positive predictions made. It is de�ned as:

Precision =
True Positives (TP)

TP+ False Positives (FP)

Recall measures the proportion of actual positives correctly identi�ed. It is de�ned as:

Recall =
TP

TP+ False Negatives (FN)

The F1 score is the harmonic mean of precision and recall. It is de�ned as:

F1 = 2× Precision× Recall

Precision+ Recall

The Fβ score generalizes the F1 score by weighing recall more heavily than precision. It is
de�ned as:

Fβ = (1 + β2)× Precision× Recall

(β2 × Precision) + Recall

Q5.8 Explain the di�erence between micro-averaged and macro-
averaged F1 scores. Under what circumstances do we use them?
[10]

The micro-averaged F1 score (Fµ
1 ) aggregates the contributions of all classes to compute the

average score. It is given by:

Fµ
1 = 2× Precisionmicro ×Recallmicro

Precisionmicro +Recallmicro
=

2
∑

TP

2
∑

TP +
∑

FP +
∑

FN

The macro-averaged F1 score (F
M
1 ) is the arithmetic mean of the F1 scores per class, treating

all classes equally:

FM
1 =

1

K

K∑
k=1

F1k

where F1k is the F1 score of the k-th class.

Q5.9 Explain (using examples) why accuracy is not a suitable met-
ric for unbalanced target classes, e.g., for a diagnostic test for a
contagious disease. [5]

Accuracy is de�ned as the ratio of correctly predicted observations to the total observations. In
the context of unbalanced datasets, particularly in disease diagnosis where the disease prevalence
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is low, a model might predict "no disease" for all patients and still achieve high accuracy. For
example:

Accuracy =
True Positives+ True Negatives

Total Observations

Consider a dataset with 1000 individuals where only 10 have the disease. A model that
predicts "no disease" for everyone would have an accuracy of:

0 + 990

10 + 990
=

990

1000
= 99%

Despite the high accuracy, the model fails to detect any true disease cases, demonstrating
the inadequacy of accuracy as a performance metric in such scenarios. It is more informative to
look at metrics such as precision, recall, and the F1 score in cases of class imbalance.

Part VI

Lecture 6

Q6.1 Explain how is the TF-IDF weight of a given document-term
pair computed. [5]

The TF-IDF weight of a document-term pair is given by:

TF-IDF(t, d) = TF(t, d)× IDF(t,D)

where:

� TF(t, d) is the term frequency, de�ned as the number of times term t appears in document
d, normalized or not.

� IDF(t,D) is the inverse document frequency, calculated as:

IDF(t,D) = log
N

|{d ∈ D : t ∈ d}|(optionaly + 1))

In this formula, N is the total number of documents in the corpus D, and |{d ∈ D : t ∈ d}|
is the number of documents where the term t appears (i.e., dft, the document frequency
of t).

The TF-IDF score increases with the number of times a word appears in the document but
is o�set by the frequency of the word in the corpus, which helps to adjust for the fact that some
words appear more frequently in general.

Q6.2 What is Zipf's law? Explain how it can be used to provide in-
tuitive justi�cation for using the logarithm when computing IDF.
[5]

Zipf's Law is an empirical rule that suggests that in many natural language datasets, the fre-
quency of a word is inversely proportional to its rank in a frequency table. In simpler terms, a
few words are very frequent, and many words are very rare. This means that the most frequent
word in a text will appear approximately twice as often as the second most frequent word, three
times as often as the third most frequent word, and so on.
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Mathematically, Zipf's Law can be expressed as: f(r) ∝ 1
rs , where f(r) is the frequency of

the word ranked r, r is the rank of the word, s is a parameter close to 1 (often approximated as
1 for natural language).

If Zipf's law holds, we can use it to justify the use of the logarithm when computing the
IDF. The intuition is that the frequency of a word is inversely proportional to its rank, which
means that the IDF should increase logarithmically with the rank of the word. This is because
the logarithm is the inverse function of the exponential, and it helps to compress the range of
values, making the IDF more manageable and interpretable. By taking the logarithm of the
IDF, we can ensure that the IDF values are not skewed by the extreme frequency di�erences
between words, aligning with the observed distribution of word frequencies in natural language
datasets.

Q6.3 De�ne conditional entropy, mutual information, write down
the relation between them, and �nally prove that mutual informa-
tion is zero if and only if the two random variables are independent
(you do not need to prove statements about DKL). [10]

Conditional entropy H(Y |X) quanti�es the expected value of the entropy of Y given that the
value of X is known. It is de�ned as:

H(Y |X) = −
∑

x∈X,y∈Y
P (x, y) logP (y|x).

Mutual information I(X;Y ) measures the amount of information that one random variable
contains about another random variable. It is de�ned as:

I(X;Y ) =
∑

x∈X,y∈Y
P (x, y) log

P (x, y)

P (x)P (y)
.

The relationship between conditional entropy and mutual information can be expressed as:

I(X;Y ) = H(Y )−H(Y |X).

This equation implies that mutual information is the reduction in uncertainty about Y due
to the knowledge of X.

The mutual information is symmetrical, so

I(X;Y ) = I(Y ;X) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Therefore
I(X;Y ) = DKL(P (X,Y )||P (X)P (Y ))

Q6.4 Show that TF-IDF terms can be considered portions of suit-
able mutual information. [10]

Let D be a collection of documents and T a collection of terms. We can express the mutual
information between a document d and a term t using their probabilities and the TF-IDF
measure.

� The probability of selecting a document d uniformly at random from D is P (d) = 1
|D| .

� The information content of a document I(d) = H(D) = log |D|.
� The probability of a term t occurring in a document d is P (t|d) = |{d∈D:t∈d}|

|D| .
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� The information content of a term t in a document d is I(t|d) = log |{d ∈ D : t ∈ d}|.
� The di�erence in information content of a document with and without a term is the IDF:
I(d)− I(t|d) = log |D| − log |{d ∈ D : t ∈ d}| = IDF(t).

The mutual information I(D; T ) is calculated as:

I(D; T ) =
∑
d,t∈d

P (d) · P (t|d) · (I(d)− I(t|d)).

Given the de�nitions of TF and IDF, we can write:

I(D; T ) = 1

|D|
∑
d,t∈d

TF(t, d) · IDF(t).

Thus, we can interpret the TF-IDF weight as a portion of the mutual information between the
collection of documents D and the collection of terms T , where each TF-IDF value corresponds
to a �bit of information� for a document-term pair.

Q6.5 Explain the concept of word embedding in the context of
MLP and how it relates to representation learning. [5]

Word embedding is a technique in representation learning where words from a vocabulary are
associated with vectors of real numbers, e�ectively capturing their semantic meanings in a
continuous vector space. Semantically similar words are positioned closely in this space.

In the realm of Multilayer Perceptrons (MLPs), these embeddings serve as the input layer.
Each word is represented by a unique, learnable vector, rather than a high-dimensional, sparse
one-hot vector. Throughout the training phase, the MLP �ne-tunes these embeddings via back-
propagation, based on the context in which words appear.

This approach is a key part of representation learning because it enables MLPs to internal-
ize language subtleties directly from data, surpassing the need for manual feature engineering.
It allows the network to capture complex syntactic and semantic word relationships, enhanc-
ing its performance on Natural Language Processing (NLP) tasks such as sentiment analysis,
translation, and text categorization.

Word embeddings are the cornerstone of modern NLP models and are integrated into more
advanced neural architectures like Recurrent Neural Networks (RNNs), Long Short-Term Mem-
ory networks (LSTMs), and Transformers, driving forward the state-of-the-art in various NLP
applications.

Q6.6 Describe the skip-gram model trained using negative sam-
pling. What is it used for? What are the input and output of the
algorithm? [10]

The skip-gram model aims to learn word embeddings that predict the context words given a
target word. For a given word in the vocabulary, the model outputs a probability distribution
over all words to be the 'context' words.

The Skip-gram model with negative sampling (SGNS) enhances training e�ciency by altering
the objective function. Instead of predicting the presence of context words among all words in
the vocabulary, SGNS focuses on distinguishing the actual context words from a number of
randomly sampled 'negative' words.

Given a pair of words (target word w and context word c), the model learns to assign high
probabilities to the actual context words and low probabilities to the negative samples. This
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is achieved by maximizing the log probability of the sigmoid function σ, which represents the
model's estimated probability that a given pair (target-context) is valid:

log σ(v⊤
c ew) (1)

Here, ew is the embedding of the target word, and vc is the embedding of the context word.
The negative samples are then introduced in the loss function, where the model maximizes
the log probability of the sigmoid of the negative of the dot product between the target word
embedding and the embedding of a negative sample ci:

− log σ(−v⊤
ciew) (2)

The overall objective combines these terms for the positive and negative samples, summing
across all positive pairs observed in the training data and a set of negative samples drawn
according to a noise distribution, often related to word frequency.

By focusing only on a small subset of negative samples rather than the entire vocabulary,
SGNS reduces computational complexity signi�cantly, allowing for faster training over large
datasets.

Algorithm 1 Word2Vec Training Algorithm

1: Initialize word embeddings for the target words and context words
2: for each epoch do
3: for each word w in the corpus do
4: context = GetContextWords(w, window_size)
5: for each context word c in context do
6: // Positive sample training
7: z = DotProduct(embedding[w], embedding[c])
8: Update embeddings using gradient ascent with the objective: log(σ(z))
9: // Negative sampling training

10: for i = 1 to k do // k is the number of negative samples
11: ci = SampleNegativeWord()
12: zi = DotProduct(embedding[w], embedding[ci])
13: Update embeddings using gradient ascent with the objective: log(σ(−zi))
14: end for
15: // Update the embeddings
16: embedding[w] = embedding[w] - learning_rate * gradient(w)
17: embedding[c] = embedding[c] - learning_rate * gradient(c)
18: for i = 1 to k do
19: embedding[ci] = embedding[ci] - learning_rate * gradient(ci)
20: end for
21: end for
22: end for
23: end for

Q6.7 How would you proceed to train a part-of-speech tagger (i.e.,
you want to assign each word with its part of speech) if you only
could use pre-trained word embeddings and MLP classi�er? [5]

I don't know mucb about this question, so this is what GPT-4 came up with:
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Data Preparation

� Acquire a dataset with words annotated with POS tags.
� Tokenize and embed words using pre-trained vectors.
� Construct input features from contextual embeddings.
� Encode POS tags with one hot vectors.

MLP Architecture

� Input layer: Size equal to concatenated embedding vectors.
� Hidden layers: One or more, with activation functions like ReLU.
� Output layer: Softmax with a neuron for each POS tag.

Training Process

� Divide data into training, validation, and test sets.
� Train with categorical cross-entropy and optimizers like Adam.
� Use validation set for hyperparameter tuning and early stopping.

Evaluation

� Assess performance on the test set.
� Use classi�cation metrics such as accuracy and F1 score.

Post-Processing

� Optionally apply sequence modeling techniques like CRFs.

Part VII

Lecture 7

Q7.1 Describe k-nearest neighbors prediction, both for regression
and classi�cation. De�ne Lp norm and describe uniform, inverse,
and softmax weighting. [10]

Regression

For regression, k-NN predicts the target value by a weighted average of the targets of the k
nearest neighbors:

t =

∑
iwi · ti∑
j wj

Classi�cation

For classi�cation, k-NN uses voting among the k nearest neighbors. For uniform weights:

class = mode{t1, t2, . . . , tk}

With non-uniform weights, the predicted class maximizes the weighted sum of targets:

class = argmax
∑
i

wi · ti,k
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Lp-norm

The Lp-norm is de�ned as:

∥x− y∥p =

(
D∑
i=1

|xi − yi|p
)1/p

Weighting Methods

� Uniform: wi = 1
� Inverse: wi =

1
distance(x,xi)

� Softmax: wi =
exp(−distance(x,xi))∑
j exp(−distance(x,xj))

Q7.2 Show that L2-regularization can be obtained from a suitable
prior by Bayesian inference (from the MAP estimate). [10]

Assuming a Gaussian prior for model parameters w with zero mean and variance σ2, the prior
distribution is given as p(wi) = N (wi; 0, σ

2). Consequently, the prior over all weights w is
p(w) =

∏N
i=1N (wi; 0, σ

2) = N (w; 0, σ2I). The maximum a posteriori (MAP) estimation is
then:

wMAP = argmax
w

p(X|w)p(w)

= argmax
w

N∏
i=1

p(xi|w)p(w)

= argmin
w

N∑
i=1

(− log p(xi|w)− log p(w)) .

Incorporating the Gaussian prior probability, we get the L2-regularized objective:

wMAP = argmin
w

[
N∑
i=1

− log p(xi|w) +
D

2
log(2πσ2) +

∥w∥2

2σ2

]
,

which is the L2-regularization term.

Q7.3 Write down how p(Ck|x) is approximated in a Naive Bayes
classi�er, explicitly state the Naive Bayes assumption, and show
how is the prediction performed. [10]

The Naive Bayes classi�er approximates the conditional probability p(Ck|x) using Bayes' the-
orem and the naive independence assumption. This assumption states that all features xd are
independent given the class Ck. Therefore, the joint probability of the feature vector x given
the class Ck can be expressed as the product of individual probabilities:

p(x | Ck) =

D∏
d=1

p(xd | Ck).

Using Bayes' theorem, the posterior probability for class Ck given the feature vector x is
then:
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p(Ck | x) =
p(x | Ck)p(Ck)

p(x)
,

where p(x) is the evidence term, typically ignored during prediction as it remains constant
across all classes.

The prediction for a new sample x is performed by choosing the class Ck that maximizes
this posterior probability:

Ĉ = argmax
k

p(Ck | x) = argmax
k

(
D∏

d=1

p(xd | Ck)

)
p(Ck).

This approach allows for e�cient computation and prediction in high-dimensional feature
spaces.

Q7.4 Considering a Gaussian naive Bayes, describe how are p(xd|Ck)
modeled (what distribution and which parameters does it have)
and how we estimate it during �tting. [10]

In Gaussian Naive Bayes, the conditional probability p(xd | Ck) for a continuous feature xd given
a class Ck is modeled by a normal distribution:

p(xd | Ck) = N (xd | µd,k, σ
2
d,k).

The parameters µd,k and σ2
d,k of this distribution are estimated from the training data using

maximum likelihood estimation (MLE). For each feature d and class k, the MLE of the mean
µd,k is computed as:

µd,k =
1

Nk

Nk∑
i=1

xi,d,

where xi,d is the i-th training sample of feature d that belongs to class Ck, and Nk is the
number of samples in class Ck.

The variance σ2
d,k is estimated as:

σ2
d,k =

1

Nk

Nk∑
i=1

(xi,d − µd,k)
2.

In practice, to avoid the issue of zero variance, a smoothing term α is often added to the
variance estimate:

σ2
d,k =

1

Nk + α

Nk∑
i=1

(xi,d − µd,k)
2 + α.

The smoothing term α is a hyperparameter that can be tuned using cross-validation.

Q7.5 Considering a Bernoulli naive Bayes, describe how are p(xd|Ck)
modeled (what distribution and which parameters does it have)
and how we estimate it during �tting. [10]

In Bernoulli Naive Bayes, the probability of a binary feature xd given a class Ck, denoted
as p(xd|Ck), is modeled using a Bernoulli distribution with parameter pd,k. This parameter
represents the probability of feature d being present in a sample of class Ck.
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p(xd | Ck) = pxd
d,k · (1− pd,k)

(1−xd).

The likelihood of class Ck given the feature vector x is then:

p(Ck | x) ∝

(
D∏

d=1

pxd
d,k · (1− pd,k)

(1−xd)

)
p(Ck),

where D is the number of binary features.
Taking the logarithm, we obtain:

log p(Ck | x) + c = log p(Ck) +
∑
d

(xd log pd,k + log(1− pd,k)) = bk + xTwk,

where c is a constant that does not depend on Ck and is not needed for prediction.
The prediction is made by:

argmax
k

log p(Ck | x) = argmax
k

bk + xTwk.

The parameter pd,k is estimated during training as the relative frequency of the feature d in
samples of class Ck:

pd,k =
1

Nk

Nk∑
i=1

xi,d,

where xi,d is the presence or absence of feature d in the i-th sample, and Nk is the total
number of samples in class Ck.

To prevent zero probabilities and to handle unseen features in the training data, smoothing
is applied. The smoothed estimate for pd,k with Laplace smoothing is:

pd,k =

∑Nk
i=1 xi,d + α

Nk + 2α
,

where α is a smoothing parameter, typically set to 1.

Q7.6 What measures can we take to prevent numeric instabili-
ties in the Naive Bayes classi�er, particularly if the probability
density is too high in Gaussian Naive Bayes and there are zero
probabilities in Bernoulli Naive Bayes? [10]

Numeric Instabilities in Naive Bayes Classi�er

1. Gaussian Naive Bayes (for continuous data):

In Gaussian Naive Bayes, we assume that the features (or variables) follow a normal (Gaussian)
distribution. The probability density function of the Gaussian is given by:

P (xi|y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
Where µy and σ2

y are the mean and variance of the features for each class y.
Issue:
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� High probability density: If the variance σ2
y is very small (i.e., the feature values are very

close to the mean), the probability density can become excessively high, potentially leading
to numeric instability.

Solutions:

� Regularization of variance: Add a small constant to the variance to avoid dividing by
a very small value, which helps prevent excessively large probability densities. This is
typically done by adding a smoothing term:

σ2
y → σ2

y + ϵ

where ϵ is a small positive constant, such as 10−10.
� Logarithmic transformation: In practice, the Naive Bayes classi�er often works with the
logarithm of the probabilities (log-likelihoods) to avoid under�ow when multiplying many
small probabilities. For Gaussian Naive Bayes, you can compute:

logP (xi|y) = −
1

2
log(2πσ2

y)−
(xi − µy)

2

2σ2
y

This approach helps in both improving numerical stability and handling very small or very
large probability values more e�ectively.

2. Bernoulli Naive Bayes (for binary features):

In Bernoulli Naive Bayes, the features are binary (i.e., they can take values 0 or 1), and the
likelihood of a feature given a class is modeled as a Bernoulli distribution:

P (xi|y) = pxi
i (1− pi)

(1−xi)

Where pi = P (xi = 1|y) is the probability of the feature being 1 for class y.
Issue:

� Zero probabilities: If any feature has zero probability (e.g., P (xi = 1|y) = 0 for some
feature xi in class y), the entire likelihood for that class will be zero, which can cause
issues when computing the posterior.

Solutions:

� Laplace smoothing: Add a small constant (typically 1) to the numerator and adjust the
denominator accordingly to avoid zero probabilities:

P (xi = 1|y) =
∑

j xij + 1

Ny + 2

where
∑

j xij is the number of times feature xi is 1 in class y, and Ny is the total number
of samples in class y. This technique is known as Laplace smoothing or additive
smoothing.

� Logarithmic transformation: As with Gaussian Naive Bayes, using the logarithm of the
probabilities can help with numeric stability. For Bernoulli Naive Bayes, you would com-
pute:

logP (xi|y) = xi log pi + (1− xi) log(1− pi)

This avoids under�ow when multiplying probabilities and helps manage very small or zero
probabilities.
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3. General Measures for Both Types of Naive Bayes:

� Avoid direct multiplication of probabilities: Instead of multiplying the probabilities di-
rectly (which can lead to very small numbers), work with the logarithms of probabilities.
Since logarithms turn products into sums, this is computationally more stable and avoids
over�ow or under�ow problems.

� Use of �oating-point precision: Ensure that the computations are done with su�cient
�oating-point precision (e.g., using double precision instead of single precision) to avoid
rounding errors that may exacerbate numeric instability.

Summary of Measures:

1. Gaussian Naive Bayes:

� Add a small constant ϵ to the variance to avoid very small values.
� Use logarithms of the likelihoods to handle small numbers more e�ectively.

2. Bernoulli Naive Bayes:

� Apply Laplace smoothing (additive smoothing) to avoid zero probabilities.
� Use logarithms of the likelihoods to handle extreme values and avoid multiplication of zero
probabilities.

By implementing these techniques, you can greatly reduce numeric instability and ensure
that the Naive Bayes classi�er performs reliably, even in challenging scenarios.

Q7.7 What is the di�erence between discriminative and (classical)
generative models? [5]

The key di�erence between discriminative and generative models lies in how they model the
data and the task they aim to solve:

Discriminative models focus on directly modeling the decision boundary between classes.
They estimate the probability of the class given the data, P (y|x), where x is the input and y
is the output. These models try to distinguish between di�erent classes based on the features,
without making assumptions about how the data is generated.

� Example: Logistic Regression, Support Vector Machines (SVMs), and Neural
Networks.

� They are typically more data-e�cient for classi�cation tasks because they focus on the
conditional probability.

Generative models, on the other hand, model how the data is generated by learning the joint
probability P (x, y). They aim to understand the underlying distribution of the features x for
each class y, and then use Bayes' theorem to compute P (y|x). In other words, they model how
the data looks within each class and can generate new samples.

� Example: Naive Bayes, Gaussian Mixture Models, and Hidden Markov Models.
� They are useful when you want to model the underlying data distribution, and they can
be used for tasks like generating new data or handling missing data.

� Discriminative models model P (y|x) directly (focused on classi�cation).
� Generative models model P (x, y) (focus on modeling the data generation process).
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Part VIII

Lecture 8

Q8.1 Prove that independent discrete random variables are uncor-
related. [10]

Given two discrete random variables X and Y , they are said to be independent if the joint
probability distribution can be expressed as the product of their marginal distributions:

P (X = x, Y = y) = P (X = x)P (Y = y) for all x and y.

The covariance of X and Y is de�ned as:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

For independent variables, the expectation of the product is the product of the expectations:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ].

Since X and Y are independent:

E[XY ] = E[X]E[Y ].

Substituting this into the covariance formula gives:

Cov(X,Y ) = E[X]E[Y ]− E[X]E[Y ] = 0.

Therefore, if X and Y are independent, their covariance is zero, implying that they are
uncorrelated.

Q8.2 Write down the de�nition of covariance and Pearson corre-
lation coe�cient ρ, including its range. [10]

The covariance between two random variables X and Y is a measure of the joint variability of
X and Y . It is de�ned as:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

where E denotes the expected value.
The Pearson correlation coe�cient, denoted as ρ or r, is de�ned as:

ρ =
Cov(X,Y )√
Var(X)Var(Y )

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2

where:

� ρ is used when the full expectation is computed (population Pearson correlation coe�-
cient);

� r is used when estimating the coe�cient from data (sample Pearson correlation coe�cient);
� x̄ and ȳ are sample estimates of the respective means.

The range of the Pearson correlation coe�cient is from -1 to 1, inclusive. A value of 1
implies a perfect positive linear relationship between variables, -1 implies a perfect negative
linear relationship, and 0 implies no linear relationship.
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Q8.3 Explain how are the Spearman's rank correlation coe�cient
and the Kendall rank correlation coe�cient computed (no need to
describe the Pearson correlation coe�cient). [10]

Spearman's Rank Correlation Coe�cient

Spearman's rank correlation coe�cient, denoted by ρ, is a nonparametric measure of rank cor-
relation (statistical dependence between the rankings of two variables). It assesses how well the
relationship between two variables can be described using a monotonic function. The formula
for Spearman's rank correlation coe�cient is:

ρ = 1− 6
∑

d2i
n(n2 − 1)

=
cov(R(X), R(Y ))

σR(X)σR(Y )

where di is the di�erence between the ranks of corresponding variables and n is the number of
observations. Hence di = rank(Xi)− rank(Yi)

Kendall Rank Correlation Coe�cient

Kendall rank correlation coe�cient, denoted by τ , measures the ordinal association between two
quantities. It is de�ned as:

τ =

∑
i<j sign(xj − xi)sign(yj − yi)

1
2n(n− 1)

where sign(x) is the sign function, which returns −1, 0, or 1 depending on the sign of x, and n
is the number of observations.

Both coe�cients range from -1 to 1. A coe�cient of 1 implies a perfect agreement, -1 implies
perfect disagreement, and 0 implies the absence of association.

Q8.4 Describe setups where a correlation coe�cient might be a
good evaluation metric. [5]

Correlation coe�cients are powerful statistical tools used to measure the strength and direction
of a linear relationship between two variables. They are particularly useful in various setups,
including:

1. Inter-Annotator Agreement (IAA): In tasks where annotators provide ratings on a
continuous scale, Pearson's or Spearman's correlation coe�cients can measure the agree-
ment level between annotators. High correlation indicates strong agreement and consis-
tency in the ratings.

2. Predictive Model Evaluation: In regression analysis, correlation coe�cients help to
assess the predictive performance of a model. For example, a high Pearson correlation
between predicted and actual values indicates a model with good predictive capabilities.

3. Feature Selection: Correlation coe�cients can identify the relationships between fea-
tures in a dataset. Features with high correlation may carry redundant information, and
one of them can be removed to reduce dimensionality.

4. Time Series Analysis: In �nancial or economic studies, correlation coe�cients can
analyze the relationship between di�erent time series data, like stock prices or interest
rates, helping to identify trends and co-movements.

41



5. Psychometrics: They are used to establish the reliability of psychometric tests, ensuring
that the test measures what it is supposed to measure consistently over time.

6. Usability Studies: They can evaluate the relationship between di�erent usability metrics,
such as time on task and error rates, to understand user behavior better.

It's important to note that while correlation coe�cients can indicate the presence of a re-
lationship, they do not imply causation. Additionally, they are sensitive to outliers, which can
disproportionately in�uence the results. Thus, they should be used alongside other statistical
methods to provide a comprehensive evaluation.

Q8.5 Describe under what circumstance correlation can be used
to assess validity of evaluation metrics. [5]

Correlation is particularly useful for assessing the validity of evaluation metrics in tasks lacking
a clear ground truth. It is applicable in situations such as:

� SoTA - benchmarking in competitions, where metrics should correlate with expert evalu-
ations to rank participants accurately.

� Grammar checking. (β value)
� Validating new metrics against established ones to ensure they measure similar constructs.
� Tasks with subjective assessments, like sentiment analysis, where metrics should correlate
with human intuition.

� Ensuring consistency of a metric across di�erent datasets or conditions to con�rm its
reliability.

In these cases, high correlation with human judgment or between di�erent evaluation metrics
indicates that the metrics are capturing aspects of performance that are consistent with human
evaluation or other reliable metrics.

Q8.6 De�ne Cohen's κ and explain what it is used for when prepar-
ing data for machine learning. [10]

Cohen's kappa coe�cient (κ) is a statistical measure used to evaluate the inter-annotator agree-
ment for qualitative (categorical) items. It is de�ned as:

κ =
po − pe
1− pe

where po is the relative observed agreement among raters, and pe is the hypothetical proba-
bility of chance agreement.

This metric is utilized in machine learning to assess the consistency of annotations provided
by di�erent human experts. It serves multiple purposes:

� Data Reliability: Ensures that the data labels used for training machine learning models
are consistent and reliable.

� Annotator Performance: Helps in evaluating the performance of annotators and can
be used to �lter out unreliable annotations.

� Cultural Insights: Low values of κ might indicate cultural di�erences or subjectivity in
the data, providing insights into potential biases.

� Model Benchmarking: Sets a benchmark for machine learning performance, as achiev-
ing high accuracy beyond IAA is often unrealistic and might indicate over�tting or data
leakage.
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By quantifying the agreement level, Cohen's kappa allows for more informed decisions in the
data curation process, ultimately leading to the development of more robust machine learning
models.

Q8.7 Assuming you have collected data for classi�cation by letting
people annotate data instances. How do you estimate a reasonable
range for classi�er performance? [5]

To estimate a reasonable range for classi�er performance, you can use several methods. Cross-
validation is a popular approach, where you split your data into k subsets and train/test the
model k times, averaging the performance. Bootstrap sampling is another method that repeat-
edly samples data with replacement, training on one set and testing on the out-of-bag instances,
which helps estimate the model's variability. The holdout method involves splitting the data into
a training and a test set, training on one and testing on the other, then repeating with di�erent
splits. You can calculate con�dence intervals around your performance metric (like accuracy)
from multiple runs to understand variability. Finally, examining bias-variance trade-o�s with
learning curves helps assess if your model is under�tting or over�tting, which can further re�ne
your estimate of performance.

Q8.8 Considering an averaging ensemble of M models, prove the
relation between the average mean squared error of the ensem-
ble and the average error of the individual models, assuming the
model errors have zero means and are uncorrelated. Use a formula
to explain what uncorrelated errors mean in this context. [20]

Let yi(x) be the prediction of model i for an input x with true target t, and εi(x) be the error
of model i such that yi(x) = t+ εi(x). The mean squared error (MSE) of model i is:

E
[
(yi(x)− t)2

]
= E

[
ε2i (x)

]
.

For an ensemble ofM models, the ensemble prediction is the average of individual predictions:

yensemble(x) =
1

M

M∑
i=1

yi(x).

The MSE of the ensemble is then:

E
[
(yensemble(x)− t)2

]
= E

( 1

M

M∑
i=1

εi(x)

)2
 .

Assuming that errors εi(x) are uncorrelated and have zero means, we have:

E [εi(x)εj(x)] = 0 for i ̸= j.

Therefore, the MSE of the ensemble simpli�es to:

E

( 1

M

M∑
i=1

εi(x)

)2
 =

1

M2
E

( M∑
i=1

εi(x)

)2
+

1

M2

∑
i,j

E [εi(x)εj(x)] =
1

M
E

[
1

M

∑
i

ε2i (x)

]
,
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Hence, the average MSE of the ensemble is 1
M times the average MSE of the individual

models.

Q8.9 Explain knowledge distillation: what it is used for, describe
how it is done. What is the loss function? How does it di�er from
standard training? [10]

Knowledge distillation is a process of transferring knowledge from a large or complex model
(teacher) to a smaller model (student). It is especially useful for deploying deep learning models
on devices with limited computational power.

The algorithm for knowledge distillation is as follows:

1. Train a large model or ensemble of models on a dataset to create the teacher model.

2. Use the trained teacher model to generate soft target distributions (also known as pseu-
dolikelihood) for each instance in the dataset.

3. Train the student model to mimic the output distribution of the teacher model by using a
loss function that compares the soft targets with the predictions of the student model.

The intuition behind knowledge distillation is that the probability distribution output by the
teacher model provides a richer signal than a one-hot encoded target, as it contains information
about the relationships between di�erent classes. This rich signal can be used to train the
student model more e�ectively.

Part IX

Lecture 9

Q9.1 In a regression decision tree, state what values are kept in
internal nodes, de�ne the squared error criterion and describe
how is a leaf split during training (without discussing splitting
constraints). [10]

In a regression decision tree, the internal nodes represent the feature and the corresponding
threshold used to split the data, while the leaves store the predicted value for the target variable.
The predicted value at each leaf is the average of the target values of the samples that fall into
that leaf.

The squared error criterion CSE for a node T is de�ned as:

CSE(T ) =
∑
i∈IT

(ti − t̄T )
2,

where t̄T is the average of the target values ti for the samples at node T , and IT is the set of
sample indices that belong to node T .

During training, a leaf is split by selecting the feature and the threshold that minimize the
summed squared error criterion of the resulting child nodes. This is achieved by:

1. Iterating over all features and all possible thresholds for each feature.

2. Splitting the node into two child nodes TL and TR based on the selected feature and
threshold.
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3. Calculating the decrease in the squared error criterion due to the split.

4. Choosing the split that results in the largest decrease in the squared error criterion.

The process continues recursively until a stopping criterion is met, which could be a maximum
depth of the tree, a minimum number of samples in a leaf, or a minimal improvement to the
criterion.

Q9.2 Explain the CART algorithm for constructing a decision
tree. Explain the relationship between the loss function that is
optimized during the decision tree construction and the splitting
criterion that is during the node splitting. [10]

In classi�cation, the CART algorithm builds a decision tree by recursively splitting the dataset
into subsets. At each node, the algorithm chooses the best feature and corresponding threshold
to split the data into two groups. The goal is to make the classes in the resulting subsets as
pure as possible.

The objective is to minimize the Gini impurity at each node.
The Gini impurity measures the "impurity" of a dataset. For a dataset D with C classes,

it is de�ned as:

Gini(D) = 1−
C∑
i=1

p2i

where:

� pi is the proportion of instances of class i in the dataset D,
� C is the number of classes.

The Gini impurity takes values between 0 (perfect purity) and 1 (maximum impurity). The
lower the Gini impurity, the purer the node.

1. Starting at the Root Node: The algorithm calculates the Gini impurity of the entire
dataset at the root node.

2. Splitting: The algorithm evaluates all possible splits based on di�erent features and
thresholds. For each possible split, the Gini impurity is computed for the resulting child
nodes (two groups). The split that results in the lowest total Gini impurity across the
child nodes is chosen.

3. Recursion: The process repeats recursively for each child node. Each time, the algorithm
selects the best feature and threshold that minimizes the Gini impurity.

4. Stopping Criteria: The tree-building stops when a stopping criterion is met, such as a
maximum depth, a minimum number of samples in a node, or when further splitting does
not reduce the impurity signi�cantly.

The loss function in this context is related to the Gini impurity. The objective of the
CART algorithm is to minimize the loss function at each step by choosing the split that leads to
the lowest Gini impurity for the child nodes. This ensures that the data in each node becomes
purer, meaning the class distribution in each node is as homogenous as possible.

In simpler terms:

� Gini impurity quanti�es the "impurity" or mixedness of the classes at each node.
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� Minimizing the Gini impurity at each node results in a decision tree where the leaves
are as pure as possible, leading to better classi�cation performance.

This process is what allows the CART algorithm to construct a decision tree that is both
e�ective and interpretable.

Instead of Gini impurity, the entropy criterion can also be used, where the goal is to
minimize the entropy at each node. The entropy criterion is de�ned as:

H(T ) = −
K∑
k=1

pT (k) log pT (k)

where pT (k) is the proportion of samples of class k in node T .
Also, for regression tasks, themean squared error (MSE) can be used as the loss function

to minimize the variance of the target variable at each node. MSE is de�ned as:

MSE(T ) =
1

|IT |
∑
i∈IT

(ti − t̄T )
2

where ti is the target value of the i-th sample, t̄T is the average target value in node T , and IT
is the set of indices of samples in node T .

Q9.3 In a K-class classi�cation decision tree, state what values
are kept in internal nodes, de�ne the Gini index and describe
how is a node split during training (without discussing splitting
constraints). [10]

In a classi�cation decision tree for K classes, internal nodes represent the decision criteria, which
consist of a feature and a threshold that is used to split the data into two child nodes.

The Gini index, also known as Gini impurity, is a measure used to quantify the purity of a
node. It is de�ned for a node T as:

CGini(T ) = |IT |
K∑
k=1

pT (k)(1− pT (k)),

where pT (k) is the proportion of samples of class k in node T , and IT is the set of indices of
samples that fall into node T .

During training, a node is split by selecting the feature and the threshold that produce child
nodes with the lowest combined Gini index. The process is as follows:

1. Iterate over all features and thresholds.

2. Calculate the Gini index for child nodes resulting from each potential split.

3. Select the feature and threshold that minimize the weighted sum of the Gini indices of the
child nodes.

This process recursively continues down the tree until a stopping criterion is reached, such as a
maximum depth or a minimum node size.
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Q9.4 In a K-class classi�cation decision tree, state what values are
kept in internal nodes, de�ne the entropy criterion and describe
how is a node split during training (without discussing splitting
constraints). [10]

In a K-class classi�cation decision tree, the internal nodes hold the decision rules, typically a
feature and a threshold that partitions the dataset into subsets.

The entropy criterion for a node T , often used as a measure of impurity or disorder within
the node, is de�ned as:

Centropy(T ) = −|IT |
K∑
k=1

pT (k) ̸=0

pT (k) log pT (k),

where pT (k) represents the proportion of class k instances within node T , and |IT | is the
number of instances in node T .

The process of splitting a node during training involves:

1. For each feature, calculate the potential splits and the resulting entropy.

2. The split that results in the largest decrease in entropy (highest information gain) is chosen.

3. This process is recursively applied to each new node until the stopping criteria are met.

Q9.5 For binary classi�cation, derive the Gini index from a squared
error loss. [20]

Consider a binary classi�cation setting with a set of training examples belonging to a leaf
node T . Let nT (0) denote the number of examples with target value 0, nT (1) the number of
examples with target value 1, and pT the proportion of examples with target value 1 in T , i.e.,
pT = nT (1)

nT (0)+nT (1) .

The squared error loss L(p) for a prediction p is de�ned as:

L(p) =
∑
i∈IT

(p− ti)
2,

where ti is the target value for the i-th example.
Minimizing the squared error loss, we �nd that the optimal prediction p is the average target

value in T , i.e., p = pT . The loss for this prediction is:

L(pT ) =
∑
i∈IT

(pT − ti)
2 = nT (0)(pT − 0)2 + nT (1)(pT − 1)2.

Expanding the terms, we get:

=
nT (0)nT (1)

2

(nT (0) + nT (1))2
+

nT (1)nT (0)
2

(nT (0) + nT (1))2

=
(nT (1)) + nT (0))nT (0)nT (1)

(nT (0) + nT (1))(nT (0) + nT (1))

= (nT (0) + nT (1))(1− pT )pT = |T | · pT (1− pT ).

(3)

which is proportional to the Gini impurity measure G(T ) = 2pT (1− pT ) for a binary classi-
�cation.
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Q9.6 For K-class classi�cation, derive the entropy criterion from
a non-averaged NLL loss. [20]

Given a set of training examples IT corresponding to a leaf node T in a decision tree for K-class
classi�cation, let nT (k) denote the count of examples in T with target class k. The probability

of class k in T is given by pT (k) =
nT (k)
|IT | .

The non-averaged negative log-likelihood loss for a distribution p over K classes is de�ned
as:

L(p) =
∑
i∈IT

− log pti ,

where pti is the predicted probability of the true class ti for the i-th example.
To minimize the NLL loss, we take its derivative with respect to pk and set it to zero, subject

to the constraint
∑

k pk = 1. This yields the minimizing condition pk = pT (k).
The value of the loss with respect to pT then simpli�es to:

L(pT ) =
∑
i∈IT

− log pti = −
∑

k:pT (k)̸=0

nT (k) log pT (k).

Using the de�nition of entropy H(pT ) for the distribution pT , we have:

H(pT ) = −
∑

k:pT (k)̸=0

pT (k) log pT (k),

which implies that the NLL loss is equal to the size of IT times the entropy of pT :

L(pT ) = |IT | ·H(pT ).

This concludes the derivation, showing that minimizing the non-averaged NLL loss is equiva-
lent to minimizing the entropy of the predicted class distribution within a leaf node of a decision
tree.

Q9.7 Describe how is a random forest trained (including bagging
and a random subset of features) and how is prediction performed
for regression and classi�cation. [10]

A random forest is an ensemble learning method that operates by constructing a multitude of
decision trees during training and outputting the class that is the mode of the classes (classi�-
cation) or mean prediction (regression) of the individual trees.

Training

The training process involves the following steps:

1. Bootstrap Aggregating (Bagging): For each tree, a bootstrap sample is drawn from
the training data. This means that for a training set of size N , M samples are drawn with
replacement to form a training set for the tree.

2. Random Feature Selection: When splitting nodes during the construction of the trees,
instead of searching for the best split among all features, a random subset of features is
selected, and the best split is found within this subset. This introduces diversity among
the trees and is key to the success of random forests.
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3. Tree Construction: Decision trees are constructed to the maximum depth without prun-
ing. Each tree is grown on a di�erent bootstrap sample of the data, and at each node, a
di�erent random subset of features is considered for splitting.

4. Ensemble Creation: Steps 1 to 3 are repeated to create a forest of decision trees,
typically ranging from tens to hundreds of trees.

Prediction

For prediction, the responses from all trees in the forest are aggregated:

� Regression: The �nal prediction is the average of the predictions from all individual
trees.

� Classi�cation: Each tree gives a vote for the class, and the class receiving the majority
of votes becomes the model's prediction. In the case of a tie, one class may be randomly
selected, or the tie may be broken based on the class distributions.

The random forest algorithm leverages the power of multiple decision trees to reduce variance
and avoid over�tting, providing robust predictions for both regression and classi�cation tasks.

Part X

Lecture 10

Q10.1 Explain the main di�erences between random forests and
gradient-boosted decision trees. [5]

Random forests and gradient-boosted decision trees (GBDT) are both ensemble learning meth-
ods that combine multiple decision trees, but they di�er in how they build and combine these
trees. In random forests, trees are built independently, with each tree trained on a random
subset of the data and features, and their predictions are averaged (for regression) or voted on
(for classi�cation) to produce the �nal result. This approach reduces variance by averaging out
errors from individual trees. In contrast, GBDT builds trees sequentially, where each new tree
is trained to correct the errors (residuals) made by the previous trees. The predictions of all
trees are combined through weighted sums, where the �nal result is more sensitive to recent
corrections. GBDT often yields better predictive performance but is more prone to over�tting
and computationally more expensive compared to random forests.

Q10.2 Explain the intuition for second-order optimization using
Newton's root-�nding method or Taylor expansions. [10]

Second-Order Optimization using Newton's Method

Second-order optimization methods, such as Newton's method, leverage information from the
second derivative (the Hessian matrix in the case of multivariate problems) to optimize a
function. The intuition behind this approach is that it uses both the gradient (�rst derivative)
and the curvature (second derivative) of the objective function to make more informed updates
during optimization, which can lead to faster convergence compared to �rst-order methods like
gradient descent.
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Newton's Method

Newton's method for optimization uses a second-order Taylor expansion around the current
point xk to approximate the objective function f(x):

f(x) ≈ f(xk) +∇f(xk)⊤(x− xk) +
1

2
(x− xk)

⊤H(xk)(x− xk)

where:

� f(x) is the objective function,
� ∇f(xk) is the gradient of the function at xk,
� H(xk) is the Hessian matrix (second derivative) of f(x) at xk.

The �rst term is the function value at the current point, the second term represents the linear
approximation of the function using the gradient, and the third term captures the curvature of
the function using the Hessian.

Intuition Behind Second-Order Optimization

� Gradient (First-Order Information): The gradient gives the direction of steepest
ascent or descent in the function. It tells you how the function changes as you move in
each direction but doesn't provide information about the shape of the function.

� Hessian (Second-Order Information): The Hessian matrix provides information about
the curvature of the function. It tells you whether the function is concave up (positive
curvature) or concave down (negative curvature) in various directions. A large value in the
Hessian suggests that the function is steep in that direction, and a small value suggests a
�atter region.

� Using Both Gradients and Curvature: In Newton's method, you use both the gradient
and the Hessian to update your position in a way that accounts for the steepness and
curvature of the function. If the Hessian indicates that the function is steep, the update
step is smaller (so as not to overshoot). If the Hessian indicates that the function is
relatively �at, the update step is larger.

Update Rule

The update step in Newton's method is given by:

xk+1 = xk −H(xk)
−1∇f(xk)

where:

� H(xk)
−1 is the inverse of the Hessian matrix,

� ∇f(xk) is the gradient at the current point xk.

By using the second-order information, Newton's method often converges more quickly than
gradient descent, especially near the optimum, because it takes into account both the slope and
the curvature of the objective function.

In Practice

� Faster Convergence: Second-order methods like Newton's method can converge more
quickly than �rst-order methods, especially when the objective function has well-behaved
curvature.
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� Computational Complexity: However, the main drawback is that computing the
Hessian matrix and its inverse can be computationally expensive, especially for high-
dimensional problems. Thus, while the method is more e�cient in terms of the number of
iterations needed to converge, it may not always be feasible for very large-scale problems.

In summary, second-order optimization, through methods like Newton's, improves upon �rst-
order methods by using not just the gradient but also the curvature of the objective function,
leading to more informed and typically faster updates, especially when the objective function
behaves well near the optimum.

Q10.3 Write down the loss function that we optimize in gradient-
boosted decision trees while constructing t tree. Then, de�ne gi
and hi and show the value wτ of optimal prediction in node τ and
the criterion used during node splitting. [20]

During the construction of the tth tree in gradient boosting, we optimize the following loss
function:

E(t)(wt;w1..t−1) =
∑
i

[
ℓ(ti, y

(t−1)(xi;w1..t−1) + yt(xi;wt))
]
+

1

2
λ∥wt∥2

≈
∑
i

[
ℓ(ti, y

(t−1)(xi)) + gi · yt(xi) +
1

2
hi · y2t (xi)

]
+

λ

2
∥w∥2.

Here, gi and hi are de�ned as the �rst and second order gradients of the loss function with
respect to the prediction at step t− 1, speci�cally:

gi =
∂ℓ(ti, y)

∂y

∣∣∣∣
y=y(t−1)(xi)

(4)

hi =
∂2ℓ(ti, y)

∂y2

∣∣∣∣
y=y(t−1)(xi)

. (5)

The optimal prediction value wT for a node T is given by:

w∗
T = −

∑
i∈IT gi

λ+
∑

i∈IT hi
, (6)

where IT denotes the set of instance indices in node T . During node splitting, we seek to
maximize the gain from the split, which is computed using these gradients.

Criterion for Node Splitting

The splitting criterion in gradient boosting is based on maximizing the gainG, which is calculated
as follows:

G =
1

2

[
(
∑

i∈IL gi)
2

λ+
∑

i∈IL hi
+

(
∑

i∈IR gi)
2

λ+
∑

i∈IR hi
−

(
∑

i∈IT gi)
2

λ+
∑

i∈IT hi

]
− γ, (7)

where IL and IR are the sets of instance indices for the left and right splits from node T ,
and γ is a regularization parameter to penalize the complexity of the model.
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Q10.4 For a K-class classi�cation, describe how to perform predic-
tion with a gradient boosted decision tree trained for T time steps
(how the individual trees perform prediction and how are the KT
trees combined to produce the predicted categorical distribution).
[10]

In aK-class classi�cation task using gradient boosted decision trees, prediction after T timesteps
is performed as follows. Each timestep t involves trainingK trees, denoted as wt,k, with each tree
predicting a value for one of the K classes. Prediction for an instance xi is made by summing
the outputs of all trees corresponding to each class across all timesteps and then applying the
softmax function to these sums to obtain the predicted probabilities for each class:

softmax(y(xi)) = softmax

(
T∑
t=1

yt,1(xi;wt,1), . . . ,
T∑
t=1

yt,K(xi;wt,K)

)
, (8)

where yt,k(xi;wt,k) is the output of the k-th tree at timestep t for instance xi. The predicted
categorical distribution for instance xi is then the output of the softmax function, which provides
a probability distribution over the K classes.

Q10.5 What type of data are gradient boosted decision trees good
for as opposed to multilayer perceptron? Explain the intuition
why it is the case. [5]

Gradient boosted decision trees (GBDTs) are optimal for structured, tabular data where input
features have high predictive power and clear interpretability. They can capture non-linear
relationships and feature interactions without extensive preprocessing.

� Good for lower-dimensional data with meaningful features.
� Handles mixed data types (continuous, categorical).
� Requires less data preprocessing.

Multilayer perceptrons (MLPs), or neural networks, are better suited for high-dimensional
data such as images or text. They excel in learning hierarchical feature representations, essential
in domains where raw features are not individually informative.

� When one feature does not mean much alone.
� Ideal for high-dimensional data (images, text).
� Capable of complex feature extraction.
� Bene�ts from pre-trained networks.

The choice of model depends on the dataset characteristics and the problem at hand.
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Part XI

Lecture 11

Q11.1 Formulate SVD decomposition of matrix X, describe prop-
erties of individual parts of the decomposition. Explain what the
reduced version of SVD is. [10]

Given a matrix X ∈ Rm×n, the singular value decomposition (SVD) of X is a factorization of
the form:

X = UΣV T

where:

� U ∈ Rm×m is an orthogonal matrix whose columns are the left singular vectors of X,
� Σ ∈ Rm×n is a diagonal matrix with non-negative real numbers on the diagonal known as
singular values, sorted in descending order,

� V ∈ Rn×n is an orthogonal matrix whose columns are the right singular vectors of X.

Properties:

� The columns of U and V are orthonormal bases for the column space and row space of X,
respectively.

� The non-zero singular values in Σ are the square roots of the non-zero eigenvalues of both
XTX and XXT .

Reduced SVD:
The reduced version of SVD is used when we want to approximate X by a matrix of lower

rank k, which is less than the original rank r. It can be expressed as:

X̃ = UkΣkV
T
k

where Uk and Vk contain only the �rst k columns of U and V , and Σk contains only the
top k singular values. This approximation minimizes the Frobenius norm ∥X − X̃∥F among all
rank-k approximations.

Q11.2 Formulate the Eckart-Young theorem. Provide an interpre-
tation of what the theorem says and why it is useful. [10]

The Eckart-Young theorem states that given a matrix X ∈ Rn×m and its Singular Value De-
composition (SVD), the best rank-k approximation Xk of X in terms of the Frobenius norm is
obtained by retaining the �rst k singular values and corresponding singular vectors. Formally:

Xk = σ1u1v
T
1 + . . .+ σkukv

T
k

where σi are the singular values, and ui, vi are the left and right singular vectors, respectively.
This approximation minimizes the Frobenius norm of the di�erence between X and Xk:

∥X −Xk∥F ≤ ∥X −B∥F
for any B ∈ Rn×m of rank k. The Frobenius norm is the square root of the sum of the

absolute squares of its elements, and it can also be expressed as the square root of the trace
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of XTX. It has the important property that multiplying by an orthonormal matrix does not
change the norm:

∥UA∥F =
√
trace((UA)TUA) =

√
trace(ATUTUA) =

√
trace(ATA) = ∥A∥F

The norm is invariant under orthogonal transformations, and the best strategy to approxi-
mate X while preserving most of its norm is to remove the smallest singular values.

Q11.3 Explain how to compute the PCA of dimension M using the
SVD decomposition of a data matrix X, and why it works. [10]

Principal Component Analysis (PCA) can be computed using Singular Value Decomposition
(SVD) of the data matrix X. For a data matrix X ∈ Rn×m, where each row is a data point and
each column is a feature, PCA is performed as follows:

1. Center the data by subtracting the mean of each feature from the data matrix, resulting
in the mean-centered matrix X̃ = X − x̄.

2. Compute the SVD of X̃, which is given by X̃ = UΣV T .

3. The columns of V (right singular vectors) correspond to the principal components of X.

4. To reduce the dimensionality to M , select the �rst M columns of V , and the �rst M
singular values from Σ.

5. The projection of X onto the M -dimensional subspace is given by XM = XVM , where VM

is the matrix containing the �rst M columns of V .

This works because the singular values in Σ represent the amount of variance captured by
each principal component, and the columns of V are the directions along which the variance is
maximized. By taking the �rst M components, we retain the features that capture the most
variance in the data.

∥X− x̄∥2F = trace
(
(X− x̄)T (X− x̄)

)
= N

D∑
i=1

Var(X:,i)

Approximating the matrix in terms of Frobenius norm means keeping the most variance from
the data. Components are ordered by how much variability in the data they capture.

Let S =
1

N
(X− x̄)T (X− x̄),

then PCA of X involves the eigenvectors of S,

denoted by the V matrix in the SVD of X− x̄.

Q11.4 Given a data matrix X, write down the algorithm for com-
puting the PCA of dimension M using the power iteration algo-
rithm. [20]

Given a data matrix X, the PCA of dimension M can be computed using the power iteration
algorithm as follows:

1. Center the data matrix X by subtracting the mean µ of each feature.
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2. Compute the covariance matrix S as S = 1
N (X − µ)T (X − µ).

3. For each dimension i from 1 to M :

(a) Initialize a random vector vi.

(b) Repeat until convergence (or a �xed number of iterations):

i. Compute vi = Svi.

ii. Normalize λi = ∥vi∥.
iii. Compute vi =

vi
λi
.

(c) De�ate S by subtracting the outer product of vi with itself, scaled by its eigenvalue:
S = S − λiviv

T
i .

4. Construct the matrix V with columns v1, v2, . . . , vM as the principal components.

5. Project the data onto the new subspace: XPCA = XV .

This algorithm computes the topM principal components by iteratively �nding the direction
of maximum variance (eigenvector) and de�ating the covariance matrix to remove this variance
before �nding the next component.

Q11.5 List at least two applications of SVD or PCA. [5]

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) are widely
used in various applications. One common application is image compression, where SVD or
PCA is used to reduce the dimensionality of image data by retaining only the most signi�cant
components, e�ectively reducing storage requirements without sacri�cing much image quality.
Another application is topic modeling in natural language processing (NLP), where PCA or
SVD is applied to text data, such as in Latent Semantic Analysis (LSA), to extract underlying
patterns in word usage and identify the most important topics in a corpus of documents. These
techniques are essential for simplifying complex data and uncovering hidden structures in a wide
range of domains.

Also, PCA is often used in data visualization to reduce high-dimensional data to 2 or 3 di-
mensions for plotting, allowing for better visualization of the data distribution and relationships
between data points.

Q11.6 Describe the K-means algorithm, including the kmeans++
initialization. What is it used for? What is the loss function that
the algorithm optimizes? What can you say about the algorithm
convergence? [20]

K-Means is a clustering algorithm that partitions N data points into K clusters. Each cluster is
de�ned by its centroid µk, which is the mean of the points assigned to the cluster. The objective
is to minimize the within-cluster sum of squares.

Let x1,x2, . . . ,xN be a collection of N input examples, each being a D-dimensional vector
xi ∈ RD. Let K, the number of target clusters, be given.

Let zi,k ∈ {0, 1} be binary indicator variables describing whether an input example xi is
assigned to cluster k, and let each cluster be speci�ed by a point µ1, . . . , µK , usually called the
cluster center.

Our objective function J , which we aim to minimize, is

55



J =
N∑
i=1

K∑
k=1

zi,k∥xi − µk∥2.

Algorithm

1. Initialization: K-means++

(a) Choose one data point uniformly at random as the �rst cluster center µ1.

(b) For each data point xi, compute D(xi), the distance between xi and the nearest
cluster center that has already been chosen.

(c) Choose one new data point at random as a new cluster center, using a weighted
probability distribution where a point xi is chosen with probability proportional to
D(xi)

2.

(d) Repeat steps ii and iii until K cluster centers have been chosen.

2. Assignment step: Assign each data point to the nearest centroid.

zi,k =

{
1 if k = argminj ∥xi − µj∥2

0 otherwise

3. Update step: Recalculate centroids as the mean of all points assigned to that centroid.

µk =

∑N
i=1 zi,kxi∑N
i=1 zi,k

4. Repeat steps 2 and 3 until the centroids no longer change signi�cantly or a maximum
number of iterations is reached.

The K-means++ initialization helps to ensure that the initial centroids are as far from each
other as possible, leading to better and faster convergence of the algorithm.

Q11.7 Name at least two clustering algorithms. What is their
main principle? How do they di�er? [10]

K-means Clustering:
Approach: Partitional clustering algorithm that divides data into k clusters by minimizing

the variance within each cluster. How it works: The algorithm iteratively assigns points to
the nearest cluster center (centroid) and updates the centroid based on the mean of points in
each cluster. This process is repeated until convergence. Advantages: Simple, fast, and e�cient
for large datasets with well-separated spherical clusters. Disadvantages: Requires specifying
the number of clusters k in advance, sensitive to initial centroid placement, and struggles with
non-spherical or overlapping clusters.

Hierarchical Clustering:
Approach: Builds a hierarchy of clusters either in a bottom-up (agglomerative) or top-

down (divisive) manner. How it works: In agglomerative hierarchical clustering, each data
point starts as its own cluster, and pairs of clusters are merged based on a distance metric
until all points are in a single cluster. In divisive clustering, all points start in one cluster,
and the algorithm recursively splits them. Advantages: Does not require pre-specifying the
number of clusters, can produce a dendrogram to visualize the relationships between clusters.
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Disadvantages: Computationally expensive, particularly for large datasets, and sensitive to noise
and outliers.

K-means is e�cient and works well for spherical clusters with a known number of clusters
but struggles with complex data structures. Hierarchical clustering produces a detailed tree-like
structure of clusters and doesn't require the number of clusters to be de�ned in advance, but it
can be slow for large datasets.

Part XII

Lecture 12

Q12.1 Considering statistical hypothesis testing, de�ne type I er-
rors and type II errors (in terms of the null hypothesis). Finally,
de�ne what a signi�cance level is. [10]

In hypothesis testing, we begin with a null hypothesis, H0, which is a statement we assume to
be true until evidence suggests otherwise. An alternative hypothesis, H1, is considered if there
is su�cient evidence against H0.

Type I and Type II Errors

� Type I Error: Also known as a false positive, occurs when H0 is true, but we incorrectly
reject it.

� Type II Error: Also known as a false negative, occurs when H0 is false, but we fail to
reject it.

The probability of making a Type I error is denoted by α, and is known as the signi�cance
level of the test. It is the threshold below which we reject H0, commonly set at 5%.

Signi�cance Level

The signi�cance level α is the probability of rejecting the null hypothesis H0 when it is actually
true. It de�nes the sensitivity of our hypothesis test.

α = P (Type I Error) = P (Reject H0|H0 is true)

The lower the value of α, the less likely we are to make a Type I error, but the higher the
chance of a Type II error.

Confusion Matrix

A confusion matrix helps to visualize the performance of a statistical test:

H0 True H1 True

Reject H0 Type I Error (False Positive) Correct Decision (True Positive)

Fail to Reject H0 Correct Decision (True Negative) Type II Error (False Negative)

Q12.2 Explain what a test statistic and a p-value are. [10]

Test Statistic

A test statistic is a standardized value derived from sample data during a hypothesis test. It
is calculated to assess the strength of the evidence against the null hypothesis. Mathematically,
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it can be represented as:

T =
Sample Estimate− Population Parameter

Standard Error

It quanti�es how far our sample statistic deviates from what we would expect if the null hy-
pothesis H0 were true, under the assumption of the null hypothesis.

P-value

The p-value is the probability of obtaining a test statistic at least as extreme as the one actually
observed, given that the null hypothesis is true. It is a measure of the evidence against the null
hypothesis provided by the sample. A smaller p-value indicates stronger evidence against H0.
It is given by:

p-value = P (T ≥ t|H0 is true)

for a right-tailed test, or
p-value = P (T ≤ t|H0 is true)

for a left-tailed test, or
p-value = P (|T | ≥ |t||H0 is true)

for a two-sided symmetric test. where t is the observed value of the test statistic.
A p-value less than the chosen signi�cance level α (commonly 0.05) leads to the rejection of

the null hypothesis.

Q12.3 Write down the steps of a statistical hypothesis test, includ-
ing a de�nition of a p-value. [10]

The procedure for performing a statistical hypothesis test is as follows:

1. Formulate the null hypothesis H0, which is a statement of no e�ect or no di�erence, and
optionally the alternative hypothesis H1, which is what you aim to support.

2. Choose the appropriate test statistic that will measure the degree of agreement between
the sample data and the null hypothesis.

3. Compute the observed value of the test statistic from the sample data.

4. Calculate the p-value, which is the probability of observing a test statistic as extreme as,
or more extreme than, the observed value, assuming the null hypothesis is true.

5. Decide whether to reject or not reject the null hypothesis by comparing the p-value to the
chosen signi�cance level α. Common choices for α include 5%, 1%, 0.5%, or 0.1%. If the
p-value is less than or equal to α, reject H0; otherwise, do not reject H0.

P-value De�nition

The p-value is de�ned as the probability of obtaining a test statistic at least as extreme as the
one that was actually observed, under the assumption that the null hypothesis is true. It is used
as a tool to decide whether to reject or not reject the null hypothesis. More detailed explanation
in Q12.2.
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Q12.4 Explain the di�erences between a one-sample test, two-
sample test, and a paired test. [10]

� One-sample test: This test is used when we want to compare the sample mean from a
single group to a known value or theoretical expectation. Common applications include
testing whether the mean of a single distribution is equal to, greater than, or less than
a certain value, or performing goodness of �t tests to determine if the data come from a
speci�ed distribution.

� Two-sample test: This type of test is applicable when two independent samples are taken
from di�erent populations, and we want to compare their means. The key assumption is
that the two samples are independent of each other.

� Paired test: Paired tests are used when the samples are not independent but are paired
in some meaningful way. For example, measurements before and after a treatment on the
same subjects, or the same subjects measured under two di�erent conditions. The test
involves computing the di�erences between the paired measurements and then performing
a one-sample test on these di�erences.

In a one-sample test, the null hypothesis typically states that the mean of the distribution
is equal to a target value. For two-sample tests, the null hypothesis commonly states that the
means of the two populations are equal. In a paired test, the null hypothesis usually states that
the mean di�erence between the paired observations is zero.

Q12.5 When considering multiple comparison problem, de�ne the
family-wise error rate, and prove the Bonferroni correction, which
allows limiting the family-wise error rate by a given α. [10]

Family-Wise Error Rate (FWER)

The family-wise error rate (FWER) is the probability of making one or more Type I errors when
performing multiple hypotheses tests. Formally, for a family of m hypotheses tests, the FWER
is de�ned as:

FWER = P

(
m⋃
i=1

(pi ≤ α)

)
where pi is the p-value for the i-th hypothesis test and α is the signi�cance level.

Bonferroni Correction

The Bonferroni correction is a method to control the FWER. It involves adjusting the signi�cance
level α by the number of hypotheses m. The corrected signi�cance level is α/m.

Proof: Using the union bound (Boole's inequality), we have:

FWER = P

(
m⋃
i=1

(pi ≤ α)

)
≤

m∑
i=1

P (pi ≤ α)

For independent tests, assuming a uniform distribution under the null hypothesis, the proba-
bility of a single test yielding a p-value less than α is exactly α. With the Bonferroni correction,
we have:

P (pi ≤
α

m
) =

α

m
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Therefore, the sum of probabilities for m independent tests is:

m∑
i=1

P (pi ≤
α

m
) = m · α

m
= α

This proves that the Bonferroni correction ensures that the FWER is at most α.

Q12.6 For a trained model and a given test set with N examples
and metric E, write how to estimate 95% con�dence intervals using
bootstrap resampling. [10]

Given a test set {(x1, t1), . . . , (xN , tN )}, a trained model with predictions {y(x1), . . . , y(xN )},
and a performance metric E, we estimate the 95% con�dence intervals of the model's performance
using bootstrap resampling as follows:

1. Initialize an empty list called performances to store the sampled performances.

2. Repeat R times, where R is a large number (commonly 1000 or more for better approxi-
mation):

(a) Generate a bootstrap sample by sampling N examples from the test set with replace-

ment.

(b) For each sampled example, obtain the corresponding model prediction.

(c) Compute the performance metric E for the bootstrap sample.

(d) Append the computed performance to the performances list.

3. Sort the list of performances.

4. The 95% con�dence interval is estimated by selecting the 2.5th percentile as the lower
bound and the 97.5th percentile as the upper bound from the sorted performances list.

Formally, the 95% con�dence interval CI is given by:

CI =

(
performances

[
R

40

]
, performances

[
39R

40

])
This interval estimates the range within which the true performance metric of the model lies

with 95% con�dence.

Q12.7 For two trained models and a given test set with N examples
and metric E, explain how to perform a paired bootstrap test that
the �rst model is better than the other. [10]

Given a test set {(x1, t1), . . . , (xN , tN )} and predictions from two models {y(x1), . . . , y(xN )} and
{z(x1), . . . , z(xN )}, we aim to test the hypothesis that the �rst model y performs better than
the second model z using the paired bootstrap test with the following steps:

1. Initialize an empty list called di�erences to store the di�erences in performances.

2. For a number of resamplings R, repeat:

(a) Generate a bootstrap sample by sampling N examples from the test set with replace-

ment.
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(b) For each sampled example, obtain the corresponding predictions from both models y
and z.

(c) Calculate the performance of both models on the sampled data using the metric E.

(d) Compute the di�erence in performance between the two models for each bootstrap
sample and append it to the di�erences list.

3. The signi�cance of the test is determined by the proportion of di�erences that are less
than or equal to zero (indicating no improvement of model y over model z).

4. This proportion represents the estimated probability that model y is not better than model
z. If this proportion is small (typically less than a chosen signi�cance level such as 0.05),
we reject the null hypothesis and conclude that model y is signi�cantly better than model
z.

Unfortunately, the value returned by the algorithm is not really a p-value. The reason is
that the distribution of di�erences was obtained under the true distribution. However, to
perform the statistical test, we require the distribution of the test statistic under the null
hypothesis. Nevertheless, you can encounter such paired bootstrap tests �in the wild�.

Q12.8 For two trained models and a given test set with N examples
and metric E, explain how to perform a random permutation test
that the �rst model is better than the other with a signi�cance
level of α. [10]

Given two trained models and a test set {(x1, t1), . . . , (xN , tN )}, with model predictions {y(x1), . . . , y(xN )}
and {z(x1), . . . , z(xN )}, we perform a random permutation test to determine if the �rst model
is signi�cantly better than the second at a signi�cance level α with the following algorithm:

1. Initialize an empty list called di�erences to store the di�erences in performance.

2. Repeat for a number of resamplings R:

(a) For each test set example, randomly permute the model predictions, e�ectively as-
signing the prediction of model y or model z to each test case.

(b) Compute the performance of the permuted predictions using the metric E.

(c) Record the performance and append it to the list performances.

3. Return the ratio of the performances which are greater than or equal to the performance
of the model y.

4. The p-value is then given by this proportion. If the p-value is less than or equal to the
signi�cance level α, we reject the null hypothesis that there is no di�erence in performance,
suggesting that the �rst model is signi�cantly better.

(The calculation of the p-value is not exactly as I say here, because the algorithm actually
returns β)
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Part XIII

Lecture 13

Q13.1 Explain the di�erence between deontological and utilitarian
ethics. List examples on how these theoretical frameworks can be
applied in machine learning ethics. [10]

Deontological Ethics focuses on the inherent nature of actions rather than their consequences.
It emphasizes adherence to prede�ned rules and principles, such as the Universal Declaration
of Human Rights, the Ten Commandments, or Kant's Categorical Imperative. In the context
of machine learning (ML), it translates to principles like bene�cence, non-malevolence, privacy,
non-discrimination, autonomy, and informed consent.

Utilitarian Ethics, on the other hand, is an ethical theory that emphasizes the maximiza-
tion of overall happiness or well-being, thus focusing on the consequences of actions. It promotes
actions that lead to the greatest overall positive impact.

In ML ethics, deontological frameworks might lead to ethical problems in:

� Problem de�nition: Some tasks may not align with fundamental ethical principles.
� Data collection: Issues like privacy invasion or non-consensual data usage.
� Model development: Ensuring models do not discriminate or violate user autonomy.

Utilitarian frameworks in ML ethics might consider:

� Model evaluation: Metrics should account for overall happiness or harm reduction.
� Model deployment: Using models in ways that maximize social good while minimizing
potential harm or feedback loops that might disadvantage certain groups.

Examples:

� A deontological approach might reject any form of user data exploitation, even if it im-
proves the performance of a recommendation system, on the principle of user autonomy.

� A utilitarian approach may justify the use of personal data if the resulting system signi�-
cantly bene�ts a large number of users, thereby increasing overall utility.

Both approaches have their merits and challenges when applied to ML ethics. Deontological
ethics provide clear guidelines but can be rigid and may lead to con�icts between principles.
Utilitarian ethics o�er �exibility and quanti�ability but may overlook individual rights and face
di�culties in de�ning collective well-being.

Q13.2 List a few examples of potential ethical problems related to
data collection. [5]

1. Representation Bias: Data may not be representative of the entire population, often
excluding minorities or economically disadvantaged groups.

2. Internet Data Misrepresentation: Data collected from the internet might dispropor-
tionately represent the views and behaviors of those who have access and are more vocal
online, skewing perceptions of the general population.

3. Historical Bias: Data re�ecting past inequalities may perpetuate these biases when used
to train modern machine learning systems.
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4. Exploitation in Crowdsourcing: Individuals hired to collect or label data, often in
low-income countries, may be underpaid and work under poor conditions, which could
lead to monotonous work that causes psychological harm.

5. Non-transparent Data Collection: Users may unknowingly provide personal data
when using online services, without a clear understanding or explicit consent of how their
data will be used or the implications of its use.

Q13.3 List a few examples of potential ethical problems that can
originate in model evaluation. [5]

1. Incomplete Metrics: Evaluation metrics may not fully capture the desired outcomes.
For instance, while translation �uency metrics may seem adequate, they might overlook
ingrained gender biases.

2. Macro-averaging Oversights: Using macro-averaging in evaluation can obscure poor
performance for speci�c user groups, often minorities, thus perpetuating discrimination.

3. Human Resource Algorithms: Employment recommendation systems optimized for
precision may inadvertently discriminate based on gender, age, ethnicity, etc., since the
system's recall�indicating the full scope of candidates, including potentially overlooked
quali�ed individuals�is not visible.

4. Data Mismatch: When training and testing data do not align, minority languages could
be disproportionately classi�ed as hate speech or not safe for work, as highlighted in the
paper "The Risk of Racial Bias in Hate Speech Detection" (Sap et al., ACL 2019).

5. Feedback Loops: Recommender systems can create feedback loops where predictions
in�uence user behavior, which then feeds back into the training data. This can lead to
echo chambers and self-a�rmative groups. A notable example is how YouTube's recom-
mendation algorithms facilitated the discovery of a category of home videos of scantily
clad children by pedophiles.

Q13.4 List at least one example of an ethical problem that can
originate in model design or model development. [5]

One ethical problem that can arise in model design or development is bias and discrimination in
predictive models. For example, if a machine learning model is trained on biased historical data,
it may perpetuate or even exacerbate existing inequalities. In hiring algorithms, if the training
data re�ects gender or racial biases, the model might unfairly favor certain demographic groups
over others. This can lead to discriminatory practices, such as hiring or lending decisions that
disadvantage certain groups, violating principles of fairness and equality. Ensuring fairness and
mitigating bias in model design is crucial to avoid these ethical issues.

Q13.5 Under what circumstances could train-test mismatch be an
ethical problem? [5]

Train-test mismatch can become an ethical problem when a model is trained on data that
doesn't accurately represent the population it will be applied to, leading to unfair or harmful
outcomes. For instance, if a model is trained on data from one demographic group (e.g., based
on gender, age, or ethnicity) but then tested or deployed on a broader or di�erent group, it may

63



fail to generalize well, leading to biased predictions. This can result in unjust decisions, such as
in healthcare or criminal justice, where individuals from underrepresented groups are unfairly
treated or disadvantaged because the model doesn't account for their speci�c characteristics. In
such cases, the mismatch between training and testing data can reinforce existing inequalities,
causing harm to individuals who are misrepresented or overlooked by the model, and raising
signi�cant ethical concerns regarding fairness, accountability, and transparency.

Part XIV

The End

Contributing

Github repo: https://github.com/Desperadus/mff-ml-exam-prep
If you �nd any errors in this document, please create a pull request. Contributions are
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